精英家教网 > 初中数学 > 题目详情
18.某篮球队12名队员的年龄如表所示:
 年龄(岁) 1819 2021
 人数5 41 2
则这12名队员年龄的众数和中位数分别是(  )
A.2,19B.18,19C.2,19.5D.18,19.5

分析 众数就是出现次数最多的数,而中位数就是大小处于中间位置的数,根据定义即可求解.

解答 解:18岁出现了5次,次数最多,因而众数是:18;
12个数,处于中间位置的都是19,因而中位数是:19.
故选B.

点评 本题考查了众数和中位数的概念:一组数据中出现次数最多的数据叫做众数;将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数;如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

8.如图,在水平地面点A处有一网球发射器向空中发射网球,网球飞行路线是一条抛物线,在地面上落点为B.有人在直线AB上点C(靠点B一侧)竖直向上摆放无盖的圆柱形桶,试图让网球落入桶内.已知AB=4米,AC=3米,网球飞行最大高度OM=5米,圆柱形桶的直径CD为0.5米,高为0.3米(网球的体积和圆柱形桶的厚度忽略不计).

(1)如图,建立直角坐标系,求此抛物线的解析式;
(2)如果竖直摆放7个圆柱形桶时,网球能不能落入桶内?
(3)当竖直摆放圆柱形桶至多多少个时,网球可以落入桶内?

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

9.如图,在平面直角坐标系xOy中,已知点A的坐标为(a,3)(其中a>4),射线OA与反比例函数y=$\frac{12}{x}$的图象交于点P,点B、C分别在函数y=$\frac{12}{x}$的图象上,且AB∥x轴,AC∥y轴;
(1)当点P横坐标为6,求直线AO的表达式;
(2)联结BO,当AB=BO时,求点A坐标;
(3)联结BP、CP,试猜想:$\frac{{S}_{△ABP}}{{S}_{△ACP}}$的值是否随a的变化而变化?如果不变,求出$\frac{{S}_{△ABP}}{{S}_{△ACP}}$的值;如果变化,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

6.解不等式组:$\left\{\begin{array}{l}3(x-1)<5x+1\\ \frac{1}{2}x-1≤7-\frac{3}{2}x\end{array}\right.$,将其解集在数轴上表示出来,并写出这个不等式组的最小整数解.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

13.2015 年2月,山西省教育厅公布了中考理化实验操作考试的物理、化学试题各24道,某考生从中随机任选一题解答,选中物理试题的概率是(  )
A.$\frac{1}{2}$B.$\frac{1}{12}$C.$\frac{1}{24}$D.$\frac{1}{48}$

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

3.现有甲、乙两个空调安装队分别为A、B两个公司安装空调,甲安装队为A公司安装66台空调,乙安装队为B公司安装80台空调,乙安装队提前一天开工,最后与甲安装队恰好同时完成安装任务.已知甲队比乙队平均每天多安装2台空调,求甲、乙两个安装队平均每天各安装多少台空调.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

10.如图甲,对于平面上不大于90°的∠MON,我们给出如下定义:如果点P在∠MON的内部,作PE⊥OM,PF⊥ON,垂足分别为点E、F,那么称PE+PF的值为点P相对于∠MON的“点角距离”,记为d(P,∠MON).如图乙,在平面直角坐标系xOy中,点P在第一象限内,且点P的横坐标比纵坐标大1,对于∠xOy,满足d(P,∠xOy)=5,点P的坐标是(3,2).

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

7.如图,在菱形ABCD中,∠ABC=120°,点E、F分别是边BC、CD上一点,且∠DAE=∠BAF,点G是线段AF的中点,连接DG、EG.
(1)求证:△CEF为等边三角形;
(2)求证:GE=$\sqrt{3}$DG.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

8.计算:$\frac{1}{1+\sqrt{2}}$+$\frac{1}{\sqrt{2}+\sqrt{3}}$+$\frac{1}{\sqrt{3}+\sqrt{4}}$+…+$\frac{1}{\sqrt{99}+\sqrt{100}}$.

查看答案和解析>>

同步练习册答案