9£®Èçͼ£¬ÔÚÆ½ÃæÖ±½Ç×ø±êϵxOyÖУ¬ÒÑÖªµãAµÄ×ø±êΪ£¨a£¬3£©£¨ÆäÖÐa£¾4£©£¬ÉäÏßOAÓë·´±ÈÀýº¯Êýy=$\frac{12}{x}$µÄͼÏó½»ÓÚµãP£¬µãB¡¢C·Ö±ðÔÚº¯Êýy=$\frac{12}{x}$µÄͼÏóÉÏ£¬ÇÒAB¡ÎxÖᣬAC¡ÎyÖ᣻
£¨1£©µ±µãPºá×ø±êΪ6£¬ÇóÖ±ÏßAOµÄ±í´ïʽ£»
£¨2£©Áª½áBO£¬µ±AB=BOʱ£¬ÇóµãA×ø±ê£»
£¨3£©Áª½áBP¡¢CP£¬ÊÔ²ÂÏ룺$\frac{{S}_{¡÷ABP}}{{S}_{¡÷ACP}}$µÄÖµÊÇ·ñËæaµÄ±ä»¯¶ø±ä»¯£¿Èç¹û²»±ä£¬Çó³ö$\frac{{S}_{¡÷ABP}}{{S}_{¡÷ACP}}$µÄÖµ£»Èç¹û±ä»¯£¬Çë˵Ã÷ÀíÓÉ£®

·ÖÎö £¨1£©¸ù¾Ý×Ô±äÁ¿µÄÖµ£¬¿ÉµÃº¯ÊýÖµ£¬¸ù¾Ý´ý¶¨ÏµÊý·¨£¬¿ÉµÃº¯Êý½âÎöʽ£»
£¨2£©¸ù¾Ýº¯ÊýÖµ£¬¿ÉµÃ×Ô±äÁ¿µÄÖµ£¬¸ù¾Ý¹´¹É¶¨Àí£¬¿ÉµÃOB³¤£¬¸ù¾ÝAB=OB£¬¿ÉµÃAµã×ø±ê£»
£¨3£©ÁªÁ¢º¯Êý½âÎöʽ£¬¿ÉµÃ·½³Ì×飬¸ù¾Ý½â·½³Ì×飬¿ÉµÃPµã×ø±ê£¬¸ù¾Ý×Ô±äÁ¿Ó뺯ÊýÖµµÄ¶ÔÓ¦¹ØÏµ£¬¿ÉµÃB¡¢Cµã×ø±ê£¬¸ù¾ÝÈý½ÇÐÎÃæ»ý¹«Ê½£¬¿ÉµÃ´ð°¸£®

½â´ð ½â£º£¨1£©µ±x=6ʱ£¬y=2£¬¡àP£¨6£¬2£©£¬
ÉèÖ±ÏßAOµÄ½âÎöʽΪy=kx£¬
´úÈëP£¨6£¬2£©µÃk=$\frac{1}{3}$£¬
¡àÖ±ÏßAOµÄ½âÎöʽΪy=$\frac{1}{3}$x£»
£¨2£©ÓÉAB¡ÎxÖᣬµÃBµãºá×ø±êΪ4£®
µ±y=3ʱ£¬x=4£¬
¡àB£¨4£¬3£©£®
OB=$\sqrt{{3}^{2}+{4}^{2}}$=5£¬
¡ßAB=OB£¬
¡à5=a-4£¬¼´a=9£¬
¡àA£¨9£¬3£©£»
£¨3£©Ö±ÏßAOµÄ½âÎöʽΪy=$\frac{3}{a}$x£¬ÁªÁ¢y=$\frac{12}{x}$£¬µÃ$\left\{\begin{array}{l}{y=\frac{3}{a}x}\\{y=\frac{12}{x}}\end{array}\right.$£¬
½âµÃ$\left\{\begin{array}{l}{x=2\sqrt{a}}\\{y=\frac{6\sqrt{a}}{a}}\end{array}\right.$£®
¡àP£¨2$\sqrt{a}$£¬$\frac{6\sqrt{a}}{a}$£©£¬
×÷PM¡ÍAB£¬PN¡ÍAC£®
µ±x=aʱ£¬y=$\frac{12}{a}$£¬¼´C£¨a£¬$\frac{12}{a}$£©£¬µ±y=3ʱ£¬x=4£¬¼´B£¨4£¬3£©£®
AC=3-$\frac{12}{a}$£¬PN=a-2$\sqrt{a}$£¬AB=a-4£¬PM=3-$\frac{6\sqrt{a}}{a}$£¬
¡àS¡÷ABP=$\frac{1}{2}$£¨a-4£©£¨3-$\frac{6\sqrt{a}}{a}$£©£¬S¡÷ACP=$\frac{1}{2}$£¨a-2$\sqrt{a}$£©£¨3-$\frac{12}{a}$£©£¬
¡à$\frac{{S}_{ABP}}{{S}_{¡÷ACP}}$=$\frac{3a-12-6\sqrt{a}+\frac{24\sqrt{a}}{a}}{3a-6\sqrt{a}-12+\frac{24\sqrt{a}}{a}}$=1£®

µãÆÀ ±¾Ì⿼²éÁË·´±ÈÀýº¯Êý×ÛºÏÌ⣬£¨1£©ÀûÓôý¶¨ÏµÊý·¨Çóº¯Êý½âÎöʽ£»£¨2£©ÀûÓÃÆ½ÐÐxÖáÖ±ÏßÉϵĵãµÄ×Ý×ø±êÏàµÈµÃ³öBµãµÄ×Ý×ø±ê£¬ÔÙÀûÓú¯ÊýÖµÓë×Ô±äÁ¿µÄ¹ØÏµµÃ³öBµã×ø±ê£¬ÀûÓÃÁ½Ïß¶ÎÏàµÈµÃ³öAµã×ø±ê£»£¨3£©ÀûÓýⷽ³Ì×éµÃ³öPµã×ø±ê£¬ÀûÓÃ×Ô±äÁ¿Ó뺯ÊýÖµµÄ¶ÔÓ¦¹ØÏµµÃ³öB¡¢Cµã×ø±ê£¬ÀûÓÃÈý½ÇÐεÄÃæ»ý¹«Ê½µÃ³ö´ð°¸£®

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

19£®ÏÂÁмÆËãÕýÈ·µÄÊÇ£¨¡¡¡¡£©
A£®$£¨\sqrt{-3}{£©^2}=-3$B£®$\sqrt{3}+\sqrt{2}=\sqrt{5}$C£®$\sqrt{4}=¡À2$D£®$\sqrt{27}¡Â\sqrt{3}=3$

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

20£®Ð¡Ã÷ÖÆ×÷Á˾ÅÕÅ¿¨Æ¬£¬ÉÏÃæ·Ö±ð±êÓÐ1£¬2£¬¡­£¬9Õâ¾Å¸öÊý×Ö£¬´ÓÖÐËæ»ú³éȡһÕÅ£¬Ëù±êÊý×ÖÇ¡ºÃÄܱ»2Õû³ýµÄ¸ÅÂÊÊÇ$\frac{4}{9}$£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

17£®ÒÑÖªµãM£¨3|a|-9£¬4-2a£©ÔÚyÖáµÄ¸º°ëÖáÉÏ£®
£¨1£©ÇóMµãµÄ×ø±ê£»
£¨2£©Çó£¨2-a£©2015+1µÄÖµ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

4£®Èç¹ûÁ½Ô²µÄ°ë¾¶³¤·Ö±ðΪ6Óë2£¬Ô²ÐľàΪ4£¬ÄÇôÕâÁ½¸öÔ²µÄλÖùØÏµÊÇ£¨¡¡¡¡£©
A£®ÄÚº¬B£®ÄÚÇÐC£®ÍâÇÐD£®Ïཻ

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

14£®ÉÈÐεİ뾶Ϊ4£¬Ô²ÐĽǦÈΪ90¡ã£¬ÓÃÕâ¸öÉÈÐÎΧ³ÉÒ»¸öÔ²×¶µÄ²àÃæ£¬ËùµÃÔ²×¶µÄµ×Ãæ°ë¾¶Îª1£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

1£®ÓôúÊýʽ±íʾ£ºaµÄ5±¶ÓëbµÄ$\frac{2}{7}$µÄ²î£º$5a-\frac{2}{7}b$£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

18£®Ä³ÀºÇò¶Ó12Ãû¶ÓÔ±µÄÄêÁäÈç±íËùʾ£º
 ÄêÁ䣨Ë꣩ 1819 2021
 ÈËÊý5 41 2
ÔòÕâ12Ãû¶ÓÔ±ÄêÁäµÄÖÚÊýºÍÖÐλÊý·Ö±ðÊÇ£¨¡¡¡¡£©
A£®2£¬19B£®18£¬19C£®2£¬19.5D£®18£¬19.5

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

19£®¼ÆËãÏÂÁи÷Ì⣺
£¨1£©$\sqrt{\frac{8}{3}}$+$\sqrt{\frac{1}{2}}$+$\sqrt{0.125}$-$\sqrt{6}$+$\sqrt{32}$£»
£¨2£©a$\sqrt{\frac{3}{a}}$+$\sqrt{9a}$-$\frac{\sqrt{a}}{2-\sqrt{3}}$£»
£¨3£©ÒÑÖªx¡¢y¶¼ÎªÊµÊý£¬ÇÒy£¾$\sqrt{x-1}$-3$\sqrt{1-x}$+2£¬»¯¼ò$\frac{2}{y-1}$•$\sqrt{1-2y+{y}^{2}}$£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸