【题目】如图,抛物线y=ax2+bx+c(a≠0)与y轴交于点C(0,4),与x轴交于A(﹣2,0),点B(4,0).
(1)求抛物线的解析式;
(2)若点M是抛物线上的一动点,且在直线BC的上方,当S△MBC取得最大值时,求点M的坐标;
(3)在直线的上方,抛物线是否存在点M,使四边形ABMC的面积为15?若存在,求出点M的坐标;若不存在,请说明理由.
【答案】(1)y=﹣x2+x+4;(2)(2,4);(3)存在,(1,
)或(3,
)
【解析】
(1)抛物线的表达式为::y=a(x+2)(x﹣4)=a(x2﹣2x﹣8),故-8a=4,即可求解;
(2)根据题意列出S△MBC=MH×OB=2(﹣
x2+x+4+x﹣4)=﹣x2+4x,即可求解;
(3)四边形ABMC的面积S=S△ABC+S△BCM=6×4+(﹣x2+4x)=15,,即可求解.
解:(1)抛物线的表达式为:y=a(x+2)(x﹣4)=a(x2﹣2x﹣8),
故﹣8a=4,解得:a=﹣,
故抛物线的表达式为:y=﹣x2+x+4;
(2)过点M作MH∥y轴交BC于点H,
将点B、C的坐标代入一次函数表达式并解得:
直线BC的表达式为:y=﹣x+4,
设点M(x,﹣x2+x+4),则点H(x,﹣x+4),
S△MBC=MH×OB=2(﹣
x2+x+4+x﹣4)=﹣x2+4x,
∵﹣1<0,故S有最大值,此时点M(2,4);
(3)四边形ABMC的面积S=S△ABC+S△BCM=×6×4+(﹣x2+4x)=15,
解得:x=1或3,故点M(1,)或(3,
).
科目:初中数学 来源: 题型:
【题目】自我省深化课程改革以来,某校开设了:A.利用影长求物体高度,B.制作视力表,C.设计遮阳棚,D.制作中心对称图形,四类数学实践活动课.规定每名学生必选且只能选修一类实践活动课,学校对学生选修实践活动课的情况进行抽样调查,将调查结果绘制成如下两幅不完整的统计图.
根据图中信息解决下列问题:
(1)本次共调查名学生,扇形统计图中B所对应的扇形的圆心角为度;
(2)补全条形统计图;
(3)选修D类数学实践活动的学生中有2名女生和2名男生表现出色,现从4人中随机抽取2人做校报设计,请用列表或画树状图法求所抽取的两人恰好是1名女生和1名男生的概率.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知二次函数y=2x2+m.(1)若点(-2,y1)与(3,y2)在此二次函数的图象上,则y1_________y2(填“>”、“=”或“<”);(2)如图,此二次函数的图象经过点(0,-4),正方形ABCD的顶点C、D在x轴上,A、B恰好在二次函数的图象上,求图中阴影部分的面积之和.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】为了落实党的“精准扶贫”政策,甲、乙两城决定向、
两乡运送肥料以支持农村生产,已知甲、乙两城共有肥料800吨,其中乙城肥料是甲城的2倍少100吨,从甲城往
、
两乡运肥料的费用分别为20元吨和25元吨;从乙城往
、
两乡运肥料的费用分别为15元吨和26元吨.现
乡需要肥料440吨,
乡需要肥料360吨.
(1)甲城和乙城各有多少吨肥料?
(2)设从甲城运往乡肥料
吨,总运费为
元,求出最少总运费.
(3)由于更换车型,使甲城运往乡的运费每吨减少
元,这时从甲城运往
乡肥料多少吨才能使总运费最少,最少是多少?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在△ABC中,∠C=90°,AB=10,,经过点C且与边AB相切的动圆与CA、CB分别交于点D、E,则线段DE长度的最小值是_____.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在⊙O中,半径OC垂直于弦AB,垂足为点D,点E在OC的延长线上,∠EAC=∠BAC
(1)求证:AE是⊙O的切线;
(2)若AB=8,cosE=,求CD的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在Rt△ABC中,∠ACB=90°,以AC为直径的⊙O与AB边交于点D,点E是边BC的中点.
(1)、求证:BC 2=BDBA;
(2)、判断DE与⊙O位置关系,并说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图1,在正方形中,点
是
的中点,点
是
边上一点,且
.
(1)求证:;
(2)将“正方形”改成“矩形”,其他条件均不变,如图2,你认为仍然有“”吗?若你同意,请以图2为例加以证明;若你不同意,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,抛物线y=ax2+bx(a>0)过点E(8,0),矩形ABCD的边AB在线段OE上(点A在点B的左侧),点C、D在抛物线上,∠BAD的平分线AM交BC于点M,点N是CD的中点,已知OA=2,且OA:AD=1:3.
(1)求抛物线的解析式;
(2)F、G分别为x轴,y轴上的动点,顺次连接M、N、G、F构成四边形MNGF,求四边形MNGF周长的最小值;
(3)在x轴下方且在抛物线上是否存在点P,使△ODP中OD边上的高为?若存在,求出点P的坐标;若不存在,请说明理由;
(4)矩形ABCD不动,将抛物线向右平移,当平移后的抛物线与矩形的边有两个交点K、L,且直线KL平分矩形的面积时,求抛物线平移的距离.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com