精英家教网 > 初中数学 > 题目详情
9.已知:在平面直角坐标系中,△ABC的顶点A、C分别在y轴、x轴上,且∠ACB=90°,AC=BC.
(1)如图1,当A(0,-3),C(1,0),点B在第四象限时,则点B的坐标为(4,-1);
(2)如图2,当点C在x轴正半轴上运动,点A在y轴正半轴上运动,点B在第四象限时,作BD⊥y轴于点D,试判断$\frac{OC+BD}{OA}$与$\frac{OC-BD}{OA}$哪一个是定值,并说明定值是多少?请证明你的结论.

分析 (1)过B作BE⊥x轴于E,推出∠2=∠OAC,∠AOC=∠BEC,根据AAS证△AOC≌△CEB,推出OA=CE,OC=BE,根据A、C的坐标即可求出答案;
(2)作BE⊥x轴于E,得出矩形OEBD,推出BD=OE,证△CEB≌△AOC,推出AO=CE,求出OC-BD=OA,代入求出即可.

解答 (1)解:如图1,过B作BE⊥x轴于E,
则∠BEC=∠ACB=∠AOC=90°,
∴∠1+∠2=90°,∠1+∠OAC=90°,
∴∠2=∠OAC,
在△AOC和△CEB中
∵$\left\{\begin{array}{l}{∠AOC=∠CEB}\\{∠OAC=∠2}\\{AC=BC}\end{array}\right.$,
∴△AOC≌△CEB(AAS),
∴OA=CE,OC=BE,
∵A(0,-3),C(1,0),
∴OA=CE=3,OC=BE=1,
∴OE=1+3=4,
∴点B的坐标为(  4,-1 ),
故答案为;4;

(2)结论:$\frac{OC-BD}{OA}$=1,
证明:如图2,作BE⊥x轴于E,
∴∠1=90°=∠2,
∴∠3+∠4=90°,
∵∠ACB=90°,
∴∠5+∠3=90°,
∴∠5=∠4,
在△CEB和△AOC中,
∵$\left\{\begin{array}{l}{∠1=∠2}\\{∠4=∠5}\\{CB=AC}\end{array}\right.$
∴△CEB≌△AOC,
∴AO=CE,
∵BE⊥x轴于E,
∴BE∥y轴,
∵BD⊥y轴于点D,EO⊥y轴于点O,
∴BD∥OE,
∴四边形OEBD是矩形,
∴EO=BD,
∴OC-BD=OC-EO=CE=AO,
∴$\frac{OC-BD}{OA}$=1.

点评 本题考查了全等三角形的性质和判定,坐标与图形性质,等腰直角三角形性质,主要考查学生运用定理进行推理和计算,题目比较好.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:填空题

14.已知不等式-x+5>3x-b的解集是x<2,则直线y=-x+5与y=3x-b的交点坐标是(2,3).

查看答案和解析>>

科目:初中数学 来源:2017届江西省九年级下学期第一次模拟考试数学试卷(解析版) 题型:解答题

(本题满分10分)如图,已知AD是△ABC的角平分线,⊙O经过A、B、D三点,过点B作BE∥AD,交⊙O于点E,连接ED.

(1)求证:ED∥AC;

(2)若BD=2CD,设△EBD的面积为,△ADC的面积为,且,求△ABC的面积.

查看答案和解析>>

科目:初中数学 来源:2017届江西省九年级下学期第一次模拟考试数学试卷(解析版) 题型:选择题

为执行“均衡教育”政策,某县2014年投入教育经费2500万元,预计到2016年底三年累计投入1.2亿元.若每年投入教育经费的年平均增长 百分率为x,则下列方程正确的是( )

A.2500(1+x)2=1.2

B.2500(1+x)2=12000

C.2500+2500(1+x)+2500(1+x)2=1.2

D.2500+2500(1+x)+2500(1+x)2=12000

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

4.如图,两个边长是2的正方形:
(1)将这两个正方形适当剪拼成一个正方形,请画出示意图.
(2)求拼出的正方形的边长.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

14.已知x-6y=5,那么x2-6xy-30y的值是25.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

1.如图所示的图案分别是大众、三菱、奔驰、奥迪汽车的车标,其中可以看作由“基本图案”经过平移得到的是(  )
A.B.C.D.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

18.等边三角形ABC绕着它的中心,至少旋转(  )度才能与它本身重合.
A.60°B.120°C.180°D.360°

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

19.单项式-$\frac{2π}{7}$x2yz的系数是-$\frac{2π}{7}$,次数是4.

查看答案和解析>>

同步练习册答案