精英家教网 > 初中数学 > 题目详情
如图:抛物线y=-x2+4x-3与x轴交于A、B两点,与y轴交于C点,点P在抛物线上∠ACB=∠BCP,求P点的坐标.?
考点:抛物线与x轴的交点
专题:
分析:过点C作CE⊥y轴,过点P作PD⊥CE交CE于点D,由抛物线y=-x2+4x-3与x轴交于A、B两点,可得A,B的坐标,进而得出OA=1,OB=3,由∠BCO=45°,得∠BCD=45°,由∠ACB=∠BCP,可得∠PCD=∠ACO,由tan∠ACO=
1
3
,可得tan∠PCD=
1
3
,设点P(x,-x2+4x-3),可得PD,CD的值,所以
-x2+4x
x
=
1
3
,解得x=
11
3
,即可得出点P的坐标.
解答:解:过点C作CE⊥y轴,过点P作PD⊥CE交CE于点D,

∵抛物线y=-x2+4x-3与x轴交于A、B两点,
∴A的坐标为(1,0),B(3,0)
∴OA=1,OB=3,
令-x2+4x-3=0得C(0,-3),
∴OC=3,
∴∠BCO=45°,
∴∠BCD=45°
∵∠ACB=∠BCP,
∴∠PCD=∠ACO,
∵tan∠ACO=
OA
OC
=
1
3

∴tan∠PCD=
PD
CD
=
1
3

设点P(x,-x2+4x-3),
PD=-x2+4x-3+3=-x2+4x,CD=x,
-x2+4x
x
=
1
3
,解得x=
11
3

∴P(
11
3
,-
16
9
),
点评:本题主要考查了抛物线与x轴的交点,解题的关键是正确作出辅助线,运用正切求解.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

先化简,后求值:
a2+2a+1
a2-1
÷(a+1+
a+1
a-1
)
,其中a=2-
3

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在边长为6
2
cm的正方形硬纸的四角,均截去一个边长为
2
cm的小正方形,然后沿虚线折叠成一个无盖的纸盒,求这个纸盒的体积.

查看答案和解析>>

科目:初中数学 来源: 题型:

已知a,b在数轴上的位置,如图.
化简:|a|-|b|-2|b-a|-|2a+b|.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,点C在线段AB上,点M,N分别是AC,BC的中点,且AB=14cm.
(1)求线段MN的长;
(2)若C在AB的延长线上(或BA的延长线上),其他条件不变,求线段MN的长度.

查看答案和解析>>

科目:初中数学 来源: 题型:

一个正n边形的边长为a,面积为S,则它的边心距为
 

查看答案和解析>>

科目:初中数学 来源: 题型:

如图为一扇木门上的三块扇形玻璃,已知它们的半径相同,而圆心角分别是40°,60°,40°,每块玻璃均由金属边包裹,而所用金属边总长度为228cm.
(1)求扇形玻璃的半径(精确到0.1cm)
(2)求三块扇形玻璃的总面积(精确到0.1cm2).

查看答案和解析>>

科目:初中数学 来源: 题型:

下列第一排表示各盒中球的情况,第二排的语言描述了摸到蓝球的可能性大小,请你用线把第一排的盒子与第二排的描述连起来使之相符.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,点A在函数y=
k
x
(x>0)的图象上,点B在x轴上,AO=AB,若△OAB的面积为3,则k的值为(  )
A、-6B、-3C、3D、6

查看答案和解析>>

同步练习册答案