【题目】如图,在四边形ABCD中,∠A=90°,AD=4,连接BD,BD⊥CD,∠ADB=∠C.若P是BC边上一动点,则DP长的最小值为 .
【答案】4
【解析】解:根据垂线段最短,当DP⊥BC的时候,DP的长度最小, ∵BD⊥CD,即∠BDC=90°,又∠A=90°,
∴∠A=∠BDC,又∠ADB=∠C,
∴∠ABD=∠CBD,又DA⊥BA,BD⊥DC,
∴AD=DP,又AD=4,
∴DP=4.
所以答案是:4.
【考点精析】解答此题的关键在于理解垂线段最短的相关知识,掌握连接直线外一点与直线上各点的所有线段中,垂线段最短;现实生活中开沟引水,牵牛喝水都是“垂线段最短”性质的应用,以及对角平分线的性质定理的理解,了解定理1:在角的平分线上的点到这个角的两边的距离相等; 定理2:一个角的两边的距离相等的点,在这个角的平分线上.
科目:初中数学 来源: 题型:
【题目】某市为了鼓励居民节约用电,采用分段计费的方法按月计算每户家庭的电费,分两档收费:第一档是当月用电量不超过240度时实行“基础电价”;第二档是当用电量超过240度时,其中的240度仍按照“基础电价”计费,超过的部分按照“提高电价”收费.设每个家庭月用电量为x 度时,应交电费为y 元.具体收费情况如折线图所示,请根据图象回答下列问题:
(1)“基础电价”是____________元 度;
(2)求出当x>240 时,y与x的函数表达式;
(3)若紫豪家六月份缴纳电费132元,求紫豪家这个月用电量为多少度?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在△BC中,AC=BC,点D、E分别是边AB、AC的中点.延长DE到点F,使DE=EF,得四边形ADCF.若使四边形ADCF是正方形,则应在△ABC中再添加一个条件为_____.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】先化简,再求值
(1)2x-{-3y+[3x-2(3x-y)]},其中x=-1,y=.
(2)5(3a2b-ab2-1)-(ab2+3a2b-5),其中a=,b=.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】下列命题:①有两个角和第三个角的平分线对应相等的两个三角形全等;②有两条边和第三条边上的中线对应相等的两个三角形全等;③有两条边和第三条边上的高对应相等的两个三角形全等.其中正确的是( )
A. ①② B. ②③ C. ①③ D. ①②③
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】小明同学在计算一个多边形(每个内角小于180°)的内角和时,由于粗心少算了一个内角,
结果得到的总和是2018°,则少算了这个内角的度数为________.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某旅行社拟在暑假期间面向学生推出“林州红旗渠一日游”活动,收费标准如下:
人数m | 0<m≤100 | 100<m≤200 | m>200 |
收费标准(元/人) | 90 | 85 | 75 |
甲、乙两所学校计划组织本校学生自愿参加此项活动.已知甲校报名参加的学生人数多于100人,乙校报名参加的学生人数少于100人.经核算,若两校分别组团共需花费20 800元,若两校联合组团只需花费18 000元.
(1)两所学校报名参加旅游的学生人数之和超过200人吗?为什么?
(2)两所学校报名参加旅游的学生各有多少人?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图1,直线AB上有一点P,点M、N分别为线段PA、PB的中点,AB=14.
(1)若点P在线段AB上,且AP=8,求线段MN的长度;
(2)若点P在直线AB上运动,设AP=x,BP=y,请分别计算下面情况时MN的长度:
①当P在AB之间(含A或B);
②当P在A左边;
③当P在B右边;
你发现了什么规律?
(3)如图2,若点C为线段AB的中点,点P在线段AB的延长线上,下列结论:①的值不变;②的值不变,请选择一个正确的结论并求其值.
图1
,
图2
,
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com