【题目】如图,直线y=x+m与双曲线相交于A(2,1)、B两点.
(1)求m及k的值;
(2)不解关于x、y的方程组直接写出点B的坐标;
(3)直线y=﹣2x+4m经过点B吗?请说明理由.
【答案】(1)m=﹣1,k=2;(2)B(﹣1,﹣2);(3)经过,理由见解析.
【解析】
(1)把点A的坐标分别代入解析式y=x+m与,即可求出m及k的值;
(2)观察直线与双曲线在第三象限内的交点,即可得出点B的坐标;
(3)把点B的横坐标代入直线的解析式y=2x+4m,算出对应的y值,然后与点B的纵坐标比较,即可得出结果.
(1)∵点A(2,1)在直线y=x+m上,∴1=2+m,∴m=﹣1;
∵点A(2,1)在双曲线上,∴k=2×1=2;
(2)观察图象,可知直线与双曲线在第三象限内交于点(﹣1,﹣2),
∴点B的坐标为(﹣1,﹣2);
(3)直线y=﹣2x+4m经过点B,
理由:
∵m=﹣1,
∴直线y=﹣2x+4m即直线y=﹣2x﹣4,当x=﹣1时,y=﹣2×(﹣1)﹣4=﹣2,
∴直线y=﹣2x+4m经过点B.
科目:初中数学 来源: 题型:
【题目】已知:如图,在△ABC中,AB=13,AC=8,cos∠BAC=,BD⊥AC,垂足为点D,E是BD的中点,联结AE并延长,交边BC于点F.
(1)求∠EAD的余切值;
(2)求的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,⊙A的半径为1,圆心A点的坐标为(2,1).直线OM是一次函数y=-x的图象.将直线OM沿x轴正方向平行移动.
(1)填空:直线OM与x轴所夹的锐角度数为 °;
(2)求出运动过程中⊙A与直线OM相切时的直线OM的函数关系式;(可直接用(1)中的结论)
(3)运动过程中,当⊙A与直线OM相交所得的弦对的圆心角为90°时,直线OM的函数关系式.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知:如图1,在平面直角坐标系中,直线1:y=﹣x+4与坐标轴分别相交于点A、B与l2:y=x相交于点C.
(1)求点C的坐标;
(2)若平行于y轴的直线x=a交于直线1于点E,交直线l2于点D,交x轴于点M,且ED=2DM,求a的值;
(3)如图2,点P是第四象限内一点,且∠BPO=135°,连接AP,探究AP与BP之间的位置关系,并证明你的结论.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】为了解本校九年级学生期末数学考试情况,在九年级随机抽取了一部分学生 的期末数学成绩为样本,分为 A(90~100 分);B(80~89 分);C(60~79 分);D(0~59 分)四个等级进行统计,并将统计结果绘制成如下统计图,请你根据统计图解答以下 问题.
(1)这次随机抽取的学生共有多少人?
(2)请补全条形统计图;
(3)这个学校九年级共有学生 1200 人,若分数为 80 分(含 80 分)以上为优秀,请估 计这次九年级学生期末数学考试成绩为优秀的学生人数大约有多少?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,点A(m,5),B(n,2)是抛物线C1:上的两点,将抛物线C1向左平移,得到抛物线C2,点A,B的对应点分别为点A',B'.若曲线段AB扫过的阴影部分面积为9,则抛物线C2的解析式是______________________________.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在平面直角坐标系中,抛物线经过点和.
(1)求抛物线的表达式和顶点坐标;
(2)将抛物线在A、B之间的部分记为图象M(含A、B两点).将图象M沿轴翻折,得到图象N.如果过点和的直线与图象M、图象N都相交,且只有两个交点,求b的取值范围.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,AB是⊙O的直径,弦DE垂直平分半径OA,C为垂足,弦DF与半径OB相交于点P,连接EF、EO,若DE=2,∠DPA=45°.则图中阴影部分的面积为____.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知二次函数y=ax+bx+c(a≠0)的图象如图所示,有下列5个结论:①abc>0;②b-a>c:③4a+2b+c>0;④3a>-c;⑤a+b>m(am+b)(m≠1的实数).其中结论正确的有( )
A. ①②③
B. ②③⑤
C. ②③④
D. ③④⑤
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com