【题目】如图,AD⊥BC于D,BE⊥AC于F,BE交AD于F,BF=AC,
(1)求证:FD=CD;
(2)连DE,求证:ED平分∠BEC;
(3)在(2)条件下,点P在AC上,连BP、DP,BP交AD于Q, BP平分∠EBC,∠BPD=∠BFD,△APQ的面积为4,求线段PD的长.
【答案】(1)证明见解析;(2)证明见解析;(3);
【解析】
(1)先证明△BFD△ACD,即可得出FD=CD;
(2)过D作DG⊥BE于G,DH⊥AC于H,由“AAS”可证△BDG△ADH,可得DG=DH,由角平分线的性质可得ED平分∠BEC;
(3)如图,过点P作PH⊥CD于H,PN⊥AD于N,延长PN交BE于点G,由角平分线的性质可证PH=PN=PE,通过全等三角形的性质可证AE=PE=PH,由面积公式可得PH=2,由直角三角形的性质可求解;
(1)证明:∵AD⊥BC于D,BE⊥AC于F,
∴∠BDA=∠CDA=90°,∠FEA=90°,
∵∠BFD=∠AFE,∠BFD+∠FBD=90°,∠AFE+∠FAE=90°,
∴∠FBD=∠FAE=∠CAD,
∵∠DAC+∠ACD=90°,∠BFD=∠AFE,∠AFE+∠FAE=90°,
∴∠BFD=∠ACD,
在△BFD和△ACD中,
∴△BFD△ACD,
∴FD=CD;
(2)证明:如图1,过D作DG⊥BE于G,DH⊥AC于H,
∵△BFD△ACD,
∴∠B=∠A,BD=AD,
∴△BDG△ADH,
∴DG=DH,且DG⊥BE,DH⊥AC,
∴ED平分∠BEC;
(3)如图,过点P作PH⊥CD于H,PN⊥AD于N,延长PN交BE于点G,
∵BP平分∠EBC,PH⊥BC,∠PEB=90°,PE=PH,
∴∠EBP=∠PBD,
∵∠PDC=∠PBD+∠BPD=,
∴∠PDC==45°,且∠ADC=90°,
∴∠ADP=∠PDC=45°,且PH⊥DC,PN⊥AD,
∴PH=PN,
∴PH=PN=PE,且∠APN=∠GPE,∠ANP=∠GEP=90°,
∴△APN△GPE,
∴AP=GP,
∴AE=GQ,
∵PH⊥CD,PN⊥AD,AD⊥CB,
∴四边形DHPN是矩形,且PH=PN,
∴四边形DHPN是正方形,
∴PH=QD=DH=NP,且FD=CD,
∴FN=CH,
∵∠A+∠C=90°,∠A+∠AFE=90°
∴∠C=∠AFE=∠GFN,且FN=CH,∠PHC=∠GNF,
∴△GNF△PHC,
∴PH=GN,
∴PH=AE=PE,
∵∠APB=∠PBC+∠C,∠AQP=∠GFN+∠EBP,
∴∠APB=∠AQP,
∴AP=AQ=2PH,
∵△APQ的面积为4,
∴,
∴,
∴PH=2,
∴PH=DH=2,且PH⊥CD,
∴;
科目:初中数学 来源: 题型:
【题目】已知,如图,△ABC中,∠A=90°,D是AC上一点,且∠ADB=2∠C,P是BC上任一点,PE⊥BD于E,PF⊥AC于F.
(1)求证:CD=BD;
(2)写出线段AB,PF和PE之间数量关系,并证明你的结论.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图钢架中,∠A=15°,现焊上与AP1等长的钢条P1P2,P2P3…来加固钢架,若最后一根钢条与射线AB的焊接点P到A点的距离为4+2,则所有钢条的总长为( )
A.16B.15C.12D.10
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知:如图,点P是等边△ABC内的一点,连接PA、PB、PC,以PB为边作等边△BPD,连接CD,若∠APB=150°,BD=6,CD=8,△APB的面积为( ).
A.48B.24C.12D.10
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,二次函数y=ax2+bx+c(a≠0)的图象经过点(﹣1,2),且与x轴交点的横坐标分别为x1,x2,其中﹣2<x1<﹣1,0<x2<1,下列结论:①4a﹣2b+c<0;②2a﹣b<0;③a+c<1;④b2+8a>4ac.其中正确的有( )
A. 1个 B. 2个 C. 3个 D. 4个
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图1,△ABC是边长为4cm的等边三角形,边AB在射线OM上,且OA=6cm,点D从点O出发,沿OM的方向以1cm/s的速度运动,当D不与点A重合时,将△ACD绕点C逆时针方向旋转60°得到△BCE,连接DE.
(1)求证:△CDE是等边三角形(下列图形中任选其一进行证明);
(2)如图2,当点D在射线OM上运动时,是否存在以D,E,B为顶点的三角形是直角三角形?若存在,求出运动时间t的值;若不存在,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图示二次函数y=ax2+bx+c的对称轴在y轴的右侧,其图象与x轴交于点A(﹣1,0)与点C(x2,0),且与y轴交于点B(0,﹣2),小强得到以下结论:①0<a<2;②﹣1<b<0;③c=﹣1;④当|a|=|b|时x2>﹣1;以上结论中正确结论的序号为 .
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,P是正方形ABCD对角线AC上一点,点E在BC上,且PE=PB.
(1)求证:PE=PD;
(2)连接DE,试判断∠PED的度数,并证明你的结论.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com