【题目】如图,在等腰梯形ABCD中,AD∥BC,E、F是边BC上的两点,且BE=CF,DE与AF相交于梯形ABCD内一点O.
(1)求证:OE=OF;
(2)当EF=AD时,联结AE、DF,先判断四边形AEFD是怎样的四边形,再证明你的结论.
【答案】(1)见解析;(2)当EF=AD时四边形AEFD是矩形,证明见解析.
【解析】
(1)根据等腰梯形的性质得到AB=DC,∠B=∠C,结合题意得到BF=CE,根据SAS得到ABF≌△DCE即可得到答案;
(2)当EF=AD时四边形AEFD是矩形,根据平行线的判定得到四边形AEFD是平行四边形,再由全等三角形的性质得到答案.
(1)在等腰梯形ABCD中
∵AB=DC,∠B=∠C
又∵BE=FC∴BF=CE
∴ABF≌△DCE(SAS)
∴∠AFB=∠CED∴OE=OF
(2)当EF=AD时四边形AEFD是矩形
证明:∵AD∥BC又EF=AD
∴四边形AEFD是平行四边形
由⑴知ABF≌△DCE∴AF=DE
∴平行四边形AEFD是矩形
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,已知△ABC和△DEF的顶点分别为A(1,0)、B(3,0)、C(2,1)、D(4,3)、E(6,5)、F(4,7).
按下列要求画图:以点O为位似中心,将△ABC向y轴左侧按比例尺2:1放大得△ABC的位似图形△A1B1C1,并解决下列问题:
(1)顶点A1的坐标为 ,B1的坐标为 ,C1的坐标为 ;
(2)请你利用旋转、平移两种变换,使△A1B1C1通过变换后得到△A2B2C2,且△A2B2C2恰与△DEF拼接成一个平行四边形(非正方形),写出符合要求的变换过程.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】数学问题:计算(其中m,n都是正整数,且m≥2,n≥1).
探究问题:为解决上面的数学问题,我们运用数形结合的思想方法,通过不断地分割一个面积为1的正方形,把数量关系和几何图形巧妙地结合起来,并采取一般问题特殊化的策略来进行探究.
探究一:计算.
第1次分割,把正方形的面积二等分,其中阴影部分的面积为;
第2次分割,把上次分割图中空白部分的面积继续二等分,阴影部分的面积之和为+;
第3次分割,把上次分割图中空白部分的面积继续二等分,…;
…
第n次分割,把上次分割图中空白部分的面积最后二等分,所有阴影部分的面积之和为+++…+,最后空白部分的面积是.
根据第n次分割图可得等式: +++…+=1﹣.
探究二:计算+++…+.
第1次分割,把正方形的面积三等分,其中阴影部分的面积为;
第2次分割,把上次分割图中空白部分的面积继续三等分,阴影部分的面积之和为+;
第3次分割,把上次分割图中空白部分的面积继续三等分,…;
…
第n次分割,把上次分割图中空白部分的面积最后三等分,所有阴影部分的面积之和为+++…+,最后空白部分的面积是.
根据第n次分割图可得等式: +++…+=1﹣,
两边同除以2,得+++…+=﹣.
探究三:计算+++…+.
(仿照上述方法,只画出第n次分割图,在图上标注阴影部分面积,并写出探究过程)
解决问题:计算+++…+.
(只需画出第n次分割图,在图上标注阴影部分面积,并完成以下填空)
根据第n次分割图可得等式:_________,
所以, +++…+=________.
拓广应用:计算 +++…+.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,正方形ABCD中,BD为对角线.
(1)尺规作图:作CD边的垂直平分线EF,交CD于点E,交BD于点F(保留作图痕迹,不要求写作法);
(2)在(1)的条件下,若AB=4,求△DEF的周长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】学校食堂厨房的桌子上整齐地摆放着若干相同规格的碟子,碟子的个数与碟子的高度的关系如下表:
(1)当桌子上放有个碟子时,请写出此时碟子的高度(用含的式子表示);
(2)分别从三个方向上看,其三视图如下图所示,厨房师傅想把它们整齐叠成一摞,求叠成一摞后的高度.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】边长为a的等边三角形,记为第1个等边三角形,取其各边的三等分点,顺次连接得到一个正六边形,记为第1个正六边形,取这个正六边形不相邻的三边中点,顺次连接又得到一个等边三角形,记为第2个等边三角形,取其各边的三等分点,顺次连接又得到一个正六边形,记为第2个正六边形(如图),…,按此方式依次操作,则第6个正六边形的边长为( )
A. B. C. D.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在数学活动课上,某活动小组用棋子摆出了下列图形:
……
第1个图形 第2个图形 第3个图形 第4个图形
(1)探索新知:
①第个图形需要_________枚棋子;②第个图形需要__________枚棋子.
(2)思维拓展:
小明说:“我要用枚棋子摆出一个符合以上规律的图形”,你认为小明能摆出吗?如果能摆出,请问摆出的是第几个图形;如果不能,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在数轴上,把表示数1的点称为基准点,记作点.对于两个不同的点M和N,若点M、点N到点的距离相等,则称点M与点N互为基准变换点.例如:图1中,点M表示数-1,点N表示数3,它们与基准点的距离都是2个单位长度,点M与点N互为基准变换点.
(1)已知点A表示数a,点B表示数b,点A与点B互为基准变换点.
①若a=0,则b=_________;若a=4,则b=_________;
②用含a的式子表示b,则b=____________;
(2)对点A进行如下操作:先把点A表示的数乘以2.5,再把所得数表示的点沿着数轴向左移动3个单位长度得到点B. 若点A与点B互为基准变换点,则点A表示的数是___________;
(3)点P在点Q的左边,点P与点Q之间的距离为8个单位长度.对P、Q两点做如下操作:点P沿数轴向右移动k(k>0)个单位长度得到,为的基准变换点,点沿数轴向右移动k个单位长度得到,为的基准变换点,…,依此顺序不断地重复,得到,,…,.为Q的基准变换点,将数轴沿原点对折后的落点为,为的基准变换点,将数轴沿原点对折后的落点为,…,依此顺序不断地重复,得到,,…,.若无论k为何值,与两点间的距离都是4,则n=__________
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com