精英家教网 > 初中数学 > 题目详情
20.如图是一枚六面体骰子的展开图,则掷一枚这样的骰子,朝上一面的数字是朝下一面的数字的3倍的概率是(  )
A.$\frac{1}{2}$B.$\frac{1}{3}$C.$\frac{1}{4}$D.$\frac{1}{6}$

分析 让朝上一面的数字恰好等于朝下一面上的数字的3倍的情况数除以总情况数即为朝上一面的数字恰好等于朝下一面上的数字的3倍的概率.

解答 解:抛掷这个立方体,共6种情况,其中2,6;1,3;4,5是相对的面,
6朝上,3朝上共2种情况,可使朝上一面的数字恰好等于朝下一面上的数字的3倍,
故其概率为:$\frac{2}{6}=\frac{1}{3}$,
故选:B.

点评 此题考查概率的求法:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=$\frac{m}{n}$.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

10.如图,已知△ABC中,∠C=90°,将△ACB绕点A顺时针旋转一个角度得△ADE,连接BE、CD,延长CD交BE于点F,求证:BF=EF.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

11.在四边形ABCD中,对角线AC与BD交于点O,E是OC上任意一点,AG⊥BE于点G,交直线BD于点F.
(1)如图1,若四边形ABCD是正方形,判断AF与BE的数量关系:AF与BE的数量关系是AF=BE;
(2)如图2,若四边形ABCD是菱形,∠ABC=120°,求$\frac{AF}{BE}$的值;
(3)如图3,若四边形ABCD中,AC⊥BD,∠ABC=α,∠DBC=β,请你补全图形,并直接写出:$\frac{AF}{BE}$=tan(α-β)(用含α,β的式子表示).

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

8.有一条公路连接A、B两地,一个骑行俱乐部上午9点从A地出发到达B地后返回,图中折线表示骑车人离A地的距离与时间的函数关系.有一辆客车9时从B地出发,以60千米/小时的速度为匀速行驶,图中的粗线表示客车离A地的距离与时间的函数关系.
(1)A、B两地相距60千米,骑车人最快速度是45千米/小时;
(2)设骑车人离A地的距离为y1,客车离A地的距离为y2,时间为x,分别求出9点到10点之间二者的函数关系式;
(3)若客车到达A地后立即返回B地(乘客上下车停留时间忽略不计),在原图上画出客车返程中离A地的距离与时间的函数图象,求出函数关系式,并求出客车与骑车人第二次相遇的时间.
(4)若客车以原速度往返于两地(乘客上下车停留时间忽略不计),客车和骑车人还会相遇几次?直接写出相遇的时间.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

15.如图,在直角梯形ABCD中,AD∥BC,∠C=90°,AD=3,以A为中心将腰AB顺时针旋转90°至AE,连接DE,若AB=5,CD=3,则BC的长为(  )
A.5B.6C.7D.8

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

5.如图:铁道口的栏杆短臂长1m,长臂长16m,当短臂端点下降0.4m时,长臂端点升高6.4m.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

12.(1)解方程组:$\left\{\begin{array}{l}{x=1-y…①}\\{3x+y=1…②}\end{array}\right.$
(2)用代入消元法解方程组$\left\{\begin{array}{l}2x+3y=12\\ x-2y=-1.\end{array}\right.\begin{array}{l}{①}\\{②}\end{array}$.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

9.如图,一座拱桥的轮廓是抛物线型,拱高OC为6m,跨度AB为20m.
(1)按如图所示的直角坐标系,求出抛物线的函数表达式;
(2)拱桥内设双向行车道(正中间是一条宽为2m的隔离带);其中的一条行车道能否并排行驶宽2m,高3m的三辆汽车(汽车间的间隔忽略不计)?请说说你的理由.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

10.如图,∠A=∠CBD,AB=2,BC=3,AC=4,BD=6,则CD的长为$\frac{9}{2}$.

查看答案和解析>>

同步练习册答案