精英家教网 > 初中数学 > 题目详情

【题目】为了在校运会中取得更好的成绩,小丁积极训练.在某次试投中铅球所经过的路线是如图所示的抛物线的一部分.已知铅球出手处A距离地面的高度是米,当铅球运行的水平距离为3米时,达到最大高度B.小丁此次投掷的成绩是多少米?

【答案】小丁此次投掷的成绩是8.

【解析】

如图建立直角坐标系,可得顶点坐标为(3),A点坐标为(0)根据顶点坐标设二次函数解析式为y=a(x-3)2+,把A点坐标代入即可求出a值,可得二次函数解析式,令y=0,求出x的正值即为铅球投掷的成绩.

如图建立直角坐标系,

∵铅球出手处距离地面的高度是米,当铅球运行的水平距离为3米时,最大高度为米,

A0),B3),

设二次函数的解析式为y=a(x-3)2+

(0-3)2a+=

解得:a=

∴二次函数的解析式为y=(x-3)2+

y=0时,(x-3)2+=0

解得:x1=8x2=-2(舍去),

∴小丁此次投掷的成绩是8.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】2018年,国家卫生健康委员会和国家教育部在全国开展了儿童青少年近视调查工作,调查数据显示,全国儿童青少年近视过半.某校初三学习小组为了解本校学生对自己视力保护的重视程度,随机在校内调查了部分学生,调查结果分为“非常重视”“重视”“比较重视”“不重视”四类,并将结果绘制成下面的两幅不完整的统计图:

根据图中信息,解答下列问题:

1)求本次调查的学生总人数,并补全条形统计图;

2)该校共有学生1000人,请你估计该校对视力保护“非常重视”的学生人数;

3)对视力“非常重视”的4人有两名男生,两名女生,若从中随机抽取两人向全校作视力保护交流,请利用树状图或列表的方法,求恰好抽到一男一女的概率.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知方程

1)求此方程的解;

2)联系生活实际,编写一道能用上述方程解决的应用题(不需解答).

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知RtABC中,∠ACB90°CD是斜边AB上的中线,过点AAECDAE分别与CDCB相交于点HEAH2CH

1)求sinCAH的值;

2)如果CD,求BE的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,AB是⊙O的直径,C是线段OB上的一点(不与点B重合),DE是半圆上的点且CDBE交于点F,用①,②DCAB,③FB=FD中的两个作为题设,余下的一个作为结论组成一个命题,则组成真命题的个数为(

A.0B.1C.2D.3

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,C的一定点,D是弦AB上的一定点,P是弦CB上的一动点.连接DP,将线段PD绕点P顺时针旋转得到线段.射线交于点Q.已知,设PC两点间的距离为xcmPD两点间的距离PQ两点的距离为.

小石根据学习函数的经验,分别对函数,随自变量x的变化而变化的规律进行了探究,下面是小石的探究过程,请补充完整:

1)按照下表中自变量x的值进行取点、画图、测量,分别得到了,与x的几组对应值:

x/cm

0

1

2

3

4

5

6

/cm

4.29

3.33

1.65

1.22

1.0

2.24

/cm

0.88

2.84

3.57

4.04

4.17

3.20

0.98

2)在同一平面直角坐标系xOy中,描出补全后的表中各组数据所对应的点,并画出函数的图象;

3)结合函数图象,解决问题:连接DQ,当△DPQ为等腰三角形时,PC的长度约为_____cm.(结果保留一位小数)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知抛物线上部分点的横坐标x与纵坐标y的对应值如下表

x

-2

-1

0

1

2

3

y

-4

0

2

2

0

-4

下列结论:①抛物线开口向下;②当时,yx的增大而减小;③抛物线的对称轴是直线;④函数的最大值为2.其中所有正确的结论为(

A.①②③B.①③C.①③④D.①②③④

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,曲线AB是抛物线的一部分(其中A是抛物线与y轴的交点,B是顶点),曲线BC是双曲线的一部分.曲线ABBC组成图形W由点C开始不断重复图形W形成一组“波浪线”.若点在该“波浪线”上,则m的值为________n的最大值为________.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系xOy中,过⊙T外一点P引它的两条切线,切点分别为MN,若,则称P为⊙T的环绕点.

(1)当⊙O半径为1时,

①在中,⊙O的环绕点是___________;

②直线y=2x+bx轴交于点Ay轴交于点B,若线段AB上存在⊙O的环绕点,求b的取值范围;

2)⊙T的半径为1,圆心为(0t),以为圆心,为半径的所有圆构成图形H,若在图形H上存在⊙T的环绕点,直接写出t的取值范围.

查看答案和解析>>

同步练习册答案