【题目】如图,在平面直角坐标系中,已知点A(2,3),点B(﹣2,1).
(1)请运用所学数学知识构造图形求出AB的长;
(2)若Rt△ABC中,点C在坐标轴上,请在备用图1中画出图形,找出所有的点C后不用计算写出你能写出的点C的坐标;
(3)在x轴上是否存在点P,使PA=PB且PA+PB最小?若存在,就求出点P的坐标;若不存在,请简要说明理由(在备用图2中画出示意图).
【答案】(1)AB=;(2)C2(0,7),C4(0,-4),C5(-1,0)、 C6(1,0);(3)不存在这样的点P.
【解析】
(1)如图,连结AB,作B关于y轴的对称点D,利用勾股定理即可得出AB;
(2)分别以A,B,C为直角顶点作图,然后直接得出符合条件的点的坐标即可;
(3)作AB的垂直平分线l3,则l3上的点满足PA=PB,作B关于x轴的对称点B′,连结AB′,即x轴上使得PA+PB最小的点,观察作图即可得出答案.
解:(1)如图,连结AB,作B关于y轴的对称点D,
由已知可得,BD=4,AD=2.∴在Rt△ABD中,AB=
(2)如图,①以A为直角顶点,过A作l1⊥AB交x轴于C1,交y轴于C2 .
②以B为直角顶点,过B作l2⊥AB交x轴于C3,交y轴于C4.
③以C为直角顶点,以AB为直径作圆交坐标轴于C5、 C6、 C7.(用三角板画找出也可)
由图可知,C2(0,7),C4(0,-4),C5(-1,0)、 C6(1,0).
(3)不存在这样的点P.
作AB的垂直平分线l3,则l3上的点满足PA=PB,
作B关于x轴的对称点B′,连结AB′,
由图可以看出两线交于第一象限.
∴不存在这样的点P.
科目:初中数学 来源: 题型:
【题目】如图,修公路遇到一座山,于是要修一条隧道.为了加快施工进度,想在小山的另一侧同时施工.为了使山的另一侧的开挖点C在AB的延长线上,设想过C点作直线AB的垂线L,过点B作一直线(在山的旁边经过),与L相交于D点,经测量∠ABD=135°,BD=800米,求直线L上距离D点多远的C处开挖?(≈1.414,精确到1米)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在△ABC中,CD是AB边上的中线,E是CD的中点,过点C作AB的平行线交AE的延长线于点F,连接BF.
(1) 求证:CF=AD;
(2) 若CA=CB,∠ACB=90°,试判断四边形CDBF的形状,并说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图甲,在△ABC中,∠ACB=90°,AC=4cm,BC=3cm,如果点P从点B出发沿BA方向向点A匀速运动,同时点Q由点A出发沿AC方向向点C匀速运动,它们的速度均为1cm/s,连接PQ,设运动时间为t(s)(0<t<4).
(1)当t为何值时,PQ∥BC;
(2)是否存在某时刻t,使线段PQ恰好把△ABC的面积平分?若存在,求出此时t的值;若不存在,请说明理由;
(3)如图乙,连接PC,将△PQC沿QC翻折,得到四边形PQP′C,当四边形PQP′C为菱形时,求t的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】先阅读下列的解题过程,然后回答下列问题.
例:解绝对值方程:.
解:讨论:①当时,原方程可化为,它的解是;
②当时,原方程可化为,它的解是.
原方程的解为或.
(1)依例题的解法,方程算的解是_______;
(2)尝试解绝对值方程:;
(3)在理解绝对值方程解法的基础上,解方程:.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知正方形ABCD,AB=8,点E是射线DC上一个动点(点E与点D不重合),连接AE,BE,以BE为边在线段AD的右侧作正方形BEFG,连结CG.
(1)当点E在线段DC上时,求证:△BAE≌△BCG;
(2)在(1)的条件下,若CE=2,求CG的长;
(3)连接CF,当△CFG为等腰三角形时,求DE的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,抛物线与轴交于点,顶点坐标为,与轴的交点在、之间(包含端点).有下列结论:
①当时,;②;③;④.
其中正确的有( )
A. 1个 B. 2个 C. 3个 D. 4个
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com