【题目】如图二次函数y=ax2+bx-2的图象交x轴于A(﹣1,0),B(2,0)两点,交y轴于点C,过A,C两点画直线.
(1)求二次函数的解析式;
(2)在平面直角坐标系中是否存在点D,使以A、B、C、D为顶点的四边形是平行四边形,如果存在,请直接写出点D的坐标,如果不存在,请说明理由。
(3)若点Q在AC下方的抛物线上运动,求以A、C、Q为顶点的三角形的面积最大值.
【答案】(1)y=x2-x-2(2)(3,-2)、(1,2)、(-3,-2).(3)
【解析】
(1)根据待定系数法即可求解;
(2)根据平行四边形的特点作图即可求解;
(3)先求出直线AC的解析式,过Q点QF⊥x轴于F点,交直线AC于P点,设Q(x, x2-x-2),表示出PQ的长,再根据S△ACQ =AO×PQ列出二次函数关系式即可求解.
(1)把A(﹣1,0),B(2,0)代入y=ax2+bx-2得
解得
∴y=x2-x-2
(2)令x=0,得y=-2
∴C(0,-2)
如图,∵A(﹣1,0),B(2,0),C(0,-2)
①四边形ABD1C是平行四边形,
∴CD1=AB=3
∴D1(3,-2)
②四边形ACBD2是平行四边形,
AB,CD2交于E点,E(,0)
∴C、D2关于E点对称,
∴D2(1,2)
③四边形ABCD3是平行四边形,
∴CD3=AB=3
∴D3(-3,-2)
综上,点D的坐标为(3,-2)、(1,2)、(-3,-2).
(3)设AC为y=kx+b,把A(﹣1,0),C(0,-2)代入得
解得
∴直线AC的解析式为y=-2x-2
过Q点QF⊥x轴于F点,交直线AC于P点,
设Q(x, x2-x-2),
∴P(x, -2x-2)
∴PQ=(-2x-2)- (x2-x-2)=- x2-x
∴S△ACQ= S△APQ+ S△PCQ=AF×PQ+FO×PQ =AO×PQ=×1×(- x2-x)=-(x+)2+
∴当x=-时,S△ACQ的最大值是.
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,抛物线与轴交于两点(点在点的左侧),经过点的直线与轴交于点与抛物线的另一个交点为,且.
(1)直接写出点的坐标,并求直线的函数表达式(其中用含的式子表示);
(2)点是直线上方的抛物线上的动点,若的面积的最大值为,求的值;
(3)设是抛物线对称轴上的一点,点在抛物线上,以点为顶点的四边形能否成为矩形?若能,求出点的坐标;若不能,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在△ABC中, , °,点D是线段BC上的动点,将线段AD绕点A顺时针旋转50°至,连接.已知AB2cm,设BD为x cm,B为y cm.
小明根据学习函数的经验,对函数y随自变量x的变化而变化的规律进行了探究,下面是小明的探究过程,请补充完整.(说明:解答中所填数值均保留一位小数)
(1)通过取点、画图、测量,得到了与的几组值,如下表:
0.5 | 0.7 | 1.0 | 1.5 | 2.0 | 2.3 | ||
1.7 | 1.3 | 1.1 | 0.7 | 0.9 | 1.1 |
(2)建立平面直角坐标系,描出以补全后的表中各对对应值为坐标的点,画出该函数的图象.
(3)结合画出的函数图象,解决问题:
线段的长度的最小值约为__________ ;
若 ,则的长度x的取值范围是_____________.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】被历代数学家尊为“算经之首”的《九章算术》是中国古代算法的扛鼎之作。《九章算术》中记载:“今有五省、六燕,集称之衡,雀俱重,燕俱轻,一雀一燕交而处,衡适平。并燕、雀重一斤。问燕,雀一枚各重几何?”译文:“今有只雀、只燕,分别聚集而且用衡器称之,聚在一起的雀重,燕轻.将一只雀、一只燕交换位置而放,重量相等.只雀、只燕重量为斤。问雀、燕每只各重多少斤?”(每只雀的重量相同、每只燕的重量相同)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某网上书城“五一·劳动节”期间在特定的书目中举办特价促销活动,有A、B、C、D四本书是小明比较中意的,但是他只打算选购两本,求下列事件的概率:
(1)小明购买A书,再从其余三本书中随机选一款,恰好选中C的概率是_________;
(2)小明随机选取两本书,请用树状图或列表法求出他恰好选中A、C两本的概率.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】点P(x1,y1)和点Q(x2,y2)是关于x的函数y=mx2﹣(2m+1)x+m+1(m为实数)图象上两个不同的点.对于下列说法:①不论m为何实数,关于x的方程mx2﹣(2m+1)x+m+1=0必有一个根为x=1;②当m=0时,(x1﹣x2)(y1﹣y2)<0成立;③当x1+x2=0时,若y1+y2=0,则m=﹣1;④当m≠0时,抛物线顶点在直线y=﹣x+1上.其中正确的是( )
A.①②B.①②③C.③④D.①②④
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】探究:如图1和图2,四边形ABCD中,已知AB=AD,∠BAD=90°,点E、F分别在BC、CD上,∠EAF=45°.
(1)①如图1,若∠B、∠ADC都是直角,把△ABE绕点A逆时针旋转90°至△ADG,使AB与AD重合,直接写出线段BE、DF和EF之间的数量关系;
②如图2,若∠B、∠D都不是直角,则当∠B与∠D满足 关系时,线段BE、DF和EF之间依然有①中的结论存在,请你写出该结论的证明过程;
(2)拓展:如图3,在△ABC中,∠BAC=90°,AB=AC=2,点D、E均在边BC上,且∠DAE=45°,若BD=1,求DE的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】小婷在放学路上,看到隧道上方有一块宣传“中国﹣南亚博览会”的竖直标语牌CD.她在A点测得标语牌顶端D处的仰角为42°,测得隧道底端B处的俯角为30°(B,C,D在同一条直线上),AB=10m,隧道高6.5m(即BC=65m),求标语牌CD的长(结果保留小数点后一位).(参考数据:sin42°≈0.67,cos42°≈0.74,tan42°≈0.90,≈1.73)
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com