精英家教网 > 初中数学 > 题目详情

【题目】已知AB是⊙O的直径,AT是⊙O的切线,∠ABT=50°,BT交⊙O于点C,E是AB上一点,延长CE交⊙O于点D.
(1)如图①,求∠T和∠CDB的大小;
(2)如图②,当BE=BC时,求∠CDO的大小.

【答案】
(1)解:如图①,∵连接AC,

∵AT是⊙O切线,AB是⊙O的直径,

∴AT⊥AB,即∠TAB=90°,

∵∠ABT=50°,

∴∠T=90°﹣∠ABT=40°,

由AB是⊙O的直径,得∠ACB=90°,

∴∠CAB=90°﹣∠ABC=40°,

∴∠CDB=∠CAB=40°;


(2)解:如图②,连接AD,

在△BCE中,BE=BC,∠EBC=50°,

∴∠BCE=∠BEC=65°,

∴∠BAD=∠BCD=65°,

∵OA=OD,

∴∠ODA=∠OAD=65°,

∵∠ADC=∠ABC=50°,

∴∠CDO=∠ODA﹣∠ADC=65°﹣50°=15°.


【解析】(1)根据切线的性质:圆的切线垂直于经过切点的半径,得∠TAB=90°,根据三角形内角和得∠T的度数,由直径所对的圆周角是直角和同弧所对的圆周角相等得∠CDB的度数;(2)如图②,连接AD,根据等边对等角得:∠BCE=∠BEC=65°,利用同圆的半径相等知:OA=OD,同理∠ODA=∠OAD=65°,由此可得结论.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】综合与探究:如图,已知抛物线y=﹣x2+2x+3的图象与x轴交于点A,B(A在B的右侧),与y轴交于点C,对称轴与抛物线交于点D,与x轴交于点E.

(1)求点A,B,C,D的坐标;
(2)求出△ACD的外心坐标;
(3)将△BCE沿x轴的正方向每秒向右平移1个单位,当点E移动到点A时停止运动,若△BCE与△ADE重合部分的面积为S,运动时间为t(s),请直接写出S关于t的函数关系式,并写出自变量的取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,一渔船自西向东追赶鱼群,在A处测得某无名小岛C在北偏东60°方向上,前进2海里到达B点,此时测得无名小岛C在东北方向上.已知无名小岛周围2.5海里内有暗礁,问渔船继续追赶鱼群有无触礁危险?(参考数据: =1.414, =1.732)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】计算:( ﹣3)0+(﹣ 2﹣|﹣2|﹣2cos60°.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在△ABC中,AB=AC,AD、CE是△ABC的两条中线,P是AD上一个动点,则下列线段的长度等于BP+EP最小值的是( )

A.BC
B.CE
C.AD
D.AC

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】为测量操场上旗杆的高度,小丽同学想到了物理学中平面镜成像的原理,她拿出随身携带的镜子和卷尺,先将镜子放在脚下的地面上,然后后退,直到她站直身子刚好能从镜子里看到旗杆的顶端E,标记好脚掌中心位置为B,测得脚掌中心位置B到镜面中心C的距离是50cm,镜面中心C距离旗杆底部D的距离为4m,如图所示.已知小丽同学的身高是1.54m,眼睛位置A距离小丽头顶的距离是4cm,则旗杆DE的高度等于(
A.10m
B.12m
C.12.4m
D.12.32m

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】江南农场收割小麦,已知1台大型收割机和3台小型收割机1小时可以收割小麦1.4公顷,2台大型收割机和5台小型收割机1小时可以收割小麦2.5公顷.
(1)每台大型收割机和每台小型收割机1小时收割小麦各多少公顷?
(2)大型收割机每小时费用为300元,小型收割机每小时费用为200元,两种型号的收割机一共有10台,要求2小时完成8公顷小麦的收割任务,且总费用不超过5400元,有几种方案?请指出费用最低的一种方案,并求出相应的费用.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】黄麻中学为了创建全省“最美书屋”,购买了一批图书,其中科普类图书平均每本的价格比文学类图书平均每本的价格多5元,已知学校用12000元购买的科普类图书的本数与用5000元购买的文学类图书的本数相等,求学校购买的科普类图书和文学类图书平均每本的价格各是多少元?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某公司生产一种新型节能电水壶并加以销售,现准备在甲城市和乙城市两个不同地方按不同销售方案进行销售,以便开拓市场. 若只在甲城市销售,销售价格为y(元/件)、月销量为x(件),y是x的一次函数,如表,

月销量x(件)

1500

2000

销售价格y(元/件)

185

180

成本为50元/件,无论销售多少,每月还需支出广告费72500元,设月利润为W(元)
(利润=销售额﹣成本﹣广告费).
若只在乙城市销售,销售价格为200元/件,受各种不确定因素影响,成本为a元/件(a为常数,40≤a≤70),当月销量为x(件)时,每月还需缴纳 x2元的附加费,设月利润为W(元)(利润=销售额﹣成本﹣附加费).
(1)当x=1000时,y=元/件,w=元;
(2)分别求出W , W与x间的函数关系式(不必写x的取值范围);
(3)当x为何值时,在甲城市销售的月利润最大?若在乙城市销售月利润的最大值与在甲城市销售月利润的最大值相同,求a的值;
(4)如果某月要将5000件产品全部销售完,请你通过分析帮公司决策,选择在甲城市还是在乙城市销售才能使所获月利润较大?

查看答案和解析>>

同步练习册答案