【题目】(1)如图1,△ACB和△DCE均为等边三角形,点A,D,E在同一直线上,连接BE。
①∠AEB的度数为__________;
②线段AD,BE之间的数量关系为__________;
(2)如图2,△ACB和△DCE均为等腰直角三角形,∠ACB=∠DCE=90°,点A,D,E在同一直线上,CM为△DCE中DE边上的高,连接BE,请判断∠AEB的度数及线段CM,AE,BE之间的数量关系,并证明你的结论;
(3)如图3,在正方形ABCD中,CD=,若点P满足PD=1,且∠BPD=90°,请直接写出点A到BP的距离为________________________________。
【答案】(1)①60°,②AD=BE;(2)∠AEB=90°,AE=BE+2CM,理由见解析;(3)A到BP的距离为或.
【解析】
(1)由条件易证△ACD≌△BCE,从而得到:AD=BE,∠ADC=∠BEC.由点A,D,E在同一直线上可求出∠ADC,从而可以求出∠AEB的度数.
(2)仿照(1)中的解法可求出∠AEB的度数,证出AD=BE;由△DCE为等腰直角三角形及CM为△DCE中DE边上的高可得CM=DM=ME,从而证到AE=2CH+BE.
(3)由PD=1可得:点P在以点D为圆心,1为半径的圆上;由∠BPD=90°可得:点P在以BD为直径的圆上.显然,点P是这两个圆的交点,由于两圆有两个交点,接下来需对两个位置分别进行讨论.然后,添加适当的辅助线,借助于(2)中的结论即可解决问题.
解:(1)①如图1,
∵△ACB和△DCE均为等边三角形,
∴CA=CB,CD=CE,∠ACB=∠DCE=60°.
∴∠ACD=∠BCE.
在△ACD和△BCE中,
∴△ACD≌△BCE(SAS).
∴∠ADC=∠BEC.
∵△DCE为等边三角形,
∴∠CDE=∠CED=60°.
∵点A,D,E在同一直线上,
∴∠ADC=120°.
∴∠BEC=120°.
∴∠AEB=∠BEC-∠CED=60°.
故答案为:60°.
②∵△ACD≌△BCE,
∴AD=BE.
故答案为:AD=BE.
(2)∠AEB=90°,AE=BE+2CM.
理由:如图2,
∵△ACB和△DCE均为等腰直角三角形,
∴CA=CB,CD=CE,∠ACB=∠DCE=90°.
∴∠ACD=∠BCE。
在△ACD和△BCE中,
∴△ACD≌△BCE.
∴AD=BE,∠ADC=∠BEC,
∵△DCE为等腰直角三角形,
∴∠CDE=∠CED=45°,
∵点A,D,E在同一直线上,
∴∠ADC=135°,
∴∠BEC=135°,
∴∠AEB=∠BEC-∠CED=90°,
∵CD=CE,CM⊥DE,
∴DM=ME,
∵∠DCE=90°,
∴DM=ME=CM,
∴AE=AD+DE=BE+2CM.
(3)A到BP的距离为或.
理由如下:
∵PD=1,
∴点P在以点D为圆心,1为半径的圆上.
∵∠BPD=90°,
∴点P在以BD为直径的圆上.
∴点P是这两圆的交点.
①当点P在如图3①所示位置时,
连接PD、PB、PA,作AH⊥BP,垂足为H,
过点A作AE⊥AP,交BP于点E,如图3①.
∵四边形ABCD是正方形,
∴∠ADB=45°.AB=AD=DC=BC=,∠BAD=90°.
∴BD= .
∵DP=1,
∴BP=.
∵∠BPD=∠BAD=90°,
∴A、P、D、B在以BD为直径的圆上,
∴∠APB=∠ADB=45°.
∴△PAE是等腰直角三角形.
又∵△BAD是等腰直角三角形,点B、E、P共线,AH⊥BP,
∴由(2)中的结论可得:BP=2AH+PD.
∴=2AH+1.
∴AH=.
②当点P在如图3②所示位置时,
连接PD、PB、PA,作AH⊥BP,垂足为H,
过点A作AE⊥AP,交PB的延长线于点E,如图3②.
同理可得:BP=2AH-PD.
∴=2AH-1.
∴AH=.
综上所述:点A到BP的距离为或.
故答案为:(1)①60°,②AD=BE;(2)∠AEB=90°,AE=BE+2CM,理由见解析;(3)A到BP的距离为或.
科目:初中数学 来源: 题型:
【题目】如图,在直角坐标系中,已知直线y=-x+4与y轴交于A点,与x轴交于B点,C点坐标为(﹣2,0).
(1)求经过A,B,C三点的抛物线的解析式;
(2)如果M为抛物线的顶点,联结AM、BM,求四边形AOBM的面积.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】改革开放40年以来,城乡居民生活水平持续快速提升。居民教育、文化和娱乐消费支出持续增长。下图为北京市统计局发布的2017年和2018年我市居民人均教育、文化和娱乐消费支出的折线图。
说明:在统计学中,同比是指本期统计数据与上一年同期统计数据相比较,例如2018年第二季度与2017年第二季度相比较;环比是指本期统计数据与上期统计数据相比较,例如2018年第二季度与2018年第一季度相比较。根据上述信息,下列结论中错误的是( )
A. 2017年第二季度环比有所提高
B. 2017年第四季度环比有所降低
C. 2018年第一季度同比有所提高
D. 2018年第四季度同比有所提高
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在下表中,我们把第i行第j列的数记为(其中i,j都是不大于5的正整数),对于表中的每个数,规定如下:当i≥j时,=l;当i<j时,=0。例如:当i=2,j=1时,==1。按此规定,=______;表中的25个数中,共有_______个1;计算 +·+·+·+·的值为_______。
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】图1所示的遮阳伞,伞柄垂直于水平地面,其示意图如图2.当伞收紧时,点P与点A重合;当伞慢慢撑开时,动点P由A向B移动;当点P到达点B时,伞张得最开.已知伞在撑开的过程中,总有PM=PN=CM=CN=6.0分米,CE=CF=18.0分米,BC=2.0分米.
﹙1﹚求AP长的取值范围;
﹙2﹚在阳光垂直照射下,伞张得最开时,求伞下的阴影﹙假定为圆面﹚面积S﹙结果保留π﹚.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图(1),已知四边形ABCD和一点O,求作四边形A′B′C′D′,使它与四边形ABCD关于点O对称;如果把O点移至如图(2)所示位置,又该怎么作图呢?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,小明画了一个锐角,并作出了它的两条高和,两高相交于点.小明说图形中共有两对相似三角形,他说的对吗?请你判定一下,如果正确,就其中的一对进行说理.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com