【题目】在平面直角坐标系中,直线y=﹣x+2与x轴交于点B,与y轴交于点C,二次函数y=﹣
+bx+c的图象经过B,C两点,且与x轴的负半轴交于点A.
(1)求二次函数的表达式;
(2)如图1,点D是抛物线第四象限上的一动点,连接DC,DB,当S△DCB=S△ABC时,求点D坐标;
(3)如图2,在(2)的条件下,点Q在CA的延长线上,连接DQ,AD,过点Q作QP∥y轴,交抛物线于P,若∠AQD=∠ACO+∠ADC,请求出PQ的长.
【答案】(1);(2)
;(3)6
【解析】
(1)先求出B、C的坐标,然后代入二次函数的解析式,解方程组即可;
(2)过D作DG⊥x轴于G,过C作CF⊥DG于F,过B作BE⊥CF于E.设D(x,y),则x>0,y<0.求出S△ABC.根据S△CBD=S△CDF-S△CEB-S梯形EBDF解方程解得到x的值,从而得到D的坐标;
(3)连接AD,过D作DM⊥x轴于M.先求出直线CD的解析式为y=-x+2,得到CO=OR=2,则∠ORC=45°.再证明∠AQD=45°.通过勾股定理的逆定理得到AC2+AD2= DC2,即有∠CAD=90°,从而有△AQD是等腰直角三角形,由等腰三角形的性质得到AQ=AD.通过证明△QAN≌△ADM,得到NA,QN的长,进而得到ON=4,即可得到N(-4,0),则P点横坐标为x=-4,代入二次函数即可得到y的值,从而得到结论.
(1)在中,令y=0,解得:x=4,∴B(4,0),令x=0,得:y=2,∴C(0,2).把B(4,0),C(0,2)代入
中,得:
,解得:
,∴二次函数的表达式为:
.
(2)过D作DG⊥x轴于G,过C作CF⊥DG于F,过B作BE⊥CF于E.设D(x,y).
∵D在第四象限,∴x>0,y<0.
∵B(4,0),C(0,2),∴CE=OB=4,CO=BE=FG=2,EF=BG=x-4,DF=DG+FG=2-y,S△ABC=AB×OC=
×(4+1)×2=5.
S△CBD=S△CDF-S△CEB-S梯形EBDF=,化简得:x+2y=-1.
∵D(x,y)在二次函数上,∴
,化简得:
,∴(x-5)(x+1)=0,∴x=5或x=-1(舍去).
当x=5时,y==-3,∴D(5,-3).
(3)如图,连接AD,过D作DM⊥x轴于M.设直线CD的解析式为y=kx+b,把C(0,2),D(5,-3)代入得到:,解得:
,∴直线CD的解析式为y=-x+2,令y=0,解得:x=2,∴R(2,0),∴CO=OR=2,∴∠ORC=45°.
∵∠ACO+∠CAO=90°,∠CAO+∠OAD=90°,∴∠ACO=∠OAD,∴∠ACO+∠ADC=∠OAD+∠ADC=∠ARC=45°,∴∠AQD=45°.
∵AC2=12+22=5,AD2=(5+1)2+32=45,DC2=52+(2+3)2=50,∴AC2+AD2=5+45=50= DC2,∴∠CAD=90°,∴∠QAD=90°.
∵∠AQD=45°,∴△AQD是等腰直角三角形,∴AQ=AD.
∵∠QAD=90°,∴∠NAQ+∠DAM=90°.
∵∠NAQ+∠AQN=90°,∴∠AQN=∠MAD.在△QAN和△ADM中,∵∠AQN=∠MAD,∠QNA=∠AMD=90°,AQ=AD,∴△QAN≌△ADM,∴NA=DM=3,QN=AM=6,∴ON=4,∴N(-4,0).设P(x,y).
∵QP∥y轴,∴P点横坐标为x=-4,∴y==-12,∴PN=12,∴PQ=PN-QN=12-6=6.
科目:初中数学 来源: 题型:
【题目】如图,点 O 是△ABC 的边 AB 上一点,以 OB 为半径的⊙O 交 BC 于点 D,过点 D 的切线交 AC 于点 E,且 DE⊥AC.
(1)证明:AB=AC;
(2)设 AB=cm,BC=2cm,当点 O 在 AB 上移动到使⊙O 与边 AC 所在直线相切时, 求⊙O 的半径.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在平面直角坐标系中,二次函数的图象交坐标轴于 A(﹣1,0),B(4,0),C
(0,﹣4)三点,点 P 是直线 BC 下方抛物线上一动点.
(1) 求这个二次函数的解析式;
(2) 是否存在点 P,使△POC 是以 OC 为底边的等腰三角形?若存在,求出 P 点坐标;若不存在,请说明理由;
(3) 在抛物线上是否存在点 D(与点 A 不重合)使得 S△DBC=S△ABC,若存在,求出点 D的坐标;若不存在,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,中,
,点
在
所在的直线上,点
在射线
上,且
,连接
.
(1)如图①,若,
,求
的度数;
(2)如图②,若,
,求
的度数;
(3)当点在直线
上(不与点
、
重合)运动时,试探究
与
的数量关系,并说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在平面直角坐标系中,抛物线y=ax2+bx+c与x轴交于A(1,0),B(3,0),与y轴交于C(0,3),抛物线顶点为D点.
(1)求此抛物线解析式;
(2)如图1,点P为抛物线上的一个动点,且在对称轴右侧,若△ADP面积为3,求点P的坐标;
(3)在(2)的条件下,PA交对称轴于点E,如图2,过E点的任一条直线与抛物线交于M,N两点,直线MD交直线y=﹣3于点F,连结NF,求证:NF∥y轴.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,方格纸中的每个小方格都是边长为1的正方形,△ABC的顶点都在格点上,请完成下列任务:
(1)将△ABC绕点C按顺时针方向旋转90°后得到△A1B1C;
(2)求线段AC旋转到A1C的过程中,所扫过的图形的面积;
(3)以点O为位似中心,位似比为2,将△A1B1C放大得到△A2B2C2(在网格之内画图).
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系xOy中,顶点为M的抛物线y=ax2+bx(a>0),经过点A和x轴正半轴上的点B,AO=OB=2,∠AOB=120°.
(1)求这条抛物线的表达式;
(2)连接OM,求∠AOM的大小;
(3)如果点C在x轴上,且△ABC与△AOM相似,求点C的坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,抛物线y1=a(x+2)2﹣3与y2=(x﹣3)2+1交于点A(1,3),过点A作x轴的平行线,分别交两条抛物线于点B,C.则以下结论:
①无论x取何值,y2的值总是正数;
②a=1;
③当x=0时,y2﹣y1=4
④2AB=3AC.
其中正确结论是______.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com