【题目】已知二次函数的图象与x轴交于A、B两点(A在B的左侧),与y轴交于点C,顶点为D.
(1)画出该二次函数的图象;
(2)连接AC、CD、BD,求ABCD的面积
【答案】(1)见解析;(2)9
【解析】
(1)先求出抛物线的顶点坐标、抛物线与坐标轴的交点坐标,然后利用描点法画二次函数图象;
(2)连接OD,如图,根据三角形面积公式,利用四边形ABDC的面积=S△AOC+S△OCD+S△OBD进行计算.
解:(1)y=x2-2x-3=(x-1)2-4,
抛物线的顶点坐标为(1,-4),
解方程x2-2x-3=0,解得x1=-1,x2=3,
抛物线与x轴的交点坐标为(-1,0),(3,0),
当x=0时,y=x2-2x-3=-3,则抛物线与y轴的交点坐标为(0,-3),
如图,
(2)连接OD,四边形ABDC的面积=S△AOC+S△OCD+S△OBD=×1×3+×3×1+×3×4=9.
故答案为9.
科目:初中数学 来源: 题型:
【题目】在一个不透明的盒子里,装有四个分别标有数字1,2,3,4的小球,它们的形状、大小、质地等完全相同.小米先从盒子中随机取出一个小球,记下数字为x,且不放回盒子,再由小华随机取出一个小球,记下数字为y.
(1)用列表法或画树状图表示出(x,y)的所有可能出现的结果;
(2)求小米、小华各取一次小球所确定的点(x,y)落在反比例函数y=的图象上的概率.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】抛物线y=ax2+bx+c的顶点为D(-1,2),与x轴的一个交点A在点(-3,0)和(-2,0)之间,其部分图象如图,则以下结论:①b2-4ac<0;②当x>-1时y随x增大而减小;③a+b+c<0;④若方程ax2+bx+c-m=0没有实数根,则m>2;⑤3a+c<0.其中,正确结论的序号是________________.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】抛物线经过点A(﹣1,0)和B(2,0),直线y=x+m经过点A和抛物线的另一个交点为C.
(1)求抛物线的解析式.
(2)动点P、Q从点A出发,分别沿线段AC和射线AO运动,运动的速度分别是每秒4个单位长度和3个单位长度.连接PQ,设运动时间为t秒,△APQ的面积为s,求s与t的函数关系式.(不写t的取值范围)
(3)在(2)的条件下,线段PQ交抛物线于点D,点E在线段AP上,且AE=AQ,连接ED,过点D作DF⊥DE交x轴于点F,当DF=DE时,求点F的坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,抛物线与轴交于点,与轴交于点,其顶点的坐标为为抛物线上轴下方一点.
(1)求抛物线的解析式;
(2)若,求点的坐标;
(3)若直线与抛物线交于两点,问:是否存在的值,使得,若存在,求出的值;若不存在,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图1,已知抛物线y=﹣x2+bx+c与x轴交于A(﹣1,0),B(3,0)两点,与y轴交于C点,点P是抛物线上在第一象限内的一个动点,且点P的横坐标为t.
(1)求抛物线的表达式;
(2)设抛物线的对称轴为l,l与x轴的交点为D.在直线l上是否存在点M,使得四边形CDPM是平行四边形?若存在,求出点M的坐标;若不存在,请说明理由.
(3)如图2,连接BC,PB,PC,设△PBC的面积为S.
①求S关于t的函数表达式;
②求P点到直线BC的距离的最大值,并求出此时点P的坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,□ABCD中,AB⊥AC,AB=1,BC=.对角线AC,BD相交于点O,将直线AC绕点O顺时针旋转,分别交BC,AD于点E,F.
(1)试说明在旋转过程中,线段AF与EC总保持相等;
(2)在旋转过程中,四边形BEDF可能是菱形吗?如果不能,请说明理由;如果能,请直接写出此时AC绕点O顺时针旋转的度数.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在去年的创建全国文明城市活动中,抱着我为文明瑞安出一份力的想法,小华就公众对在餐厅吸烟的态度进行了随机抽样调查,主要有四种态度:A、顾客出面制止;B、劝说进吸烟室;C、餐厅老板出面制止;D、无所谓.他将调查结果绘制了两幅不完整的统计图.请你根据图中的信息回答下列问题:
(1)这次抽样的公众有__________人;
(2)请将统计图①补充完整;
(3)在统计图②中,“无所谓”部分所对应的圆心角是多少度?
(4)若瑞安全市人口有120万人,估计赞成“餐厅老板出面制止”的有多少万人?
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com