分析 (1)由角平分线的定义可得∠PAC=α,在Rt△PAC中根据直角三角形的性质可求得∠ACP;
(2)结合(1)可求得∠ACD,可证明∠ACD+∠BAC=180°,可证明AB∥CD;
(3)由平行线的性质可得∠ECF=∠CAP,∠ECD=∠CAB,结合条件可证得∠ECF=∠FCD,可证得结论.
解答 (1)解:
∵AP平分∠BAC,
∴∠CAP=∠BAP=α,
∵∠P=90°,
∴∠ACP=90°-∠CAP=90°-α;
(2)证明:
由(1)可知∠ACP=90°-α,
∵CP平分∠ACD,
∴∠ACD=2∠ACP=180°-2α,
又∠BAC=2∠BAP=2α,
∴∠ACD+∠BAC=180°,
∴AB∥CD;
(3)证明:
∵AP∥CF,
∴∠ECF=∠CAP=α,
由(2)可知AB∥CD,
∴∠ECD=∠CAB=2α,
∴∠DCF=∠ECD-∠ECF=α,
∴∠ECF=∠DCF,
∴CF平分∠DCE.
点评 本题主要考查平行线的判定和性质,掌握平行线的判定和性质是解题的关键,即①两直线平行?同位角相等,②两直线平行?内错角相等,③两直线平行?同旁内角互补,④a∥b,b∥c⇒a∥c.
科目:初中数学 来源: 题型:选择题
| A. | $\sqrt{13}$ | B. | $\sqrt{5}$ | C. | 3 | D. | 2 |
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:填空题
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
| A. | 对角线相等的四边形是平行四边形 | |
| B. | 对角线互相平分且相等的四边形是菱形 | |
| C. | 对角线互相垂直平分的四边形是矩形 | |
| D. | 对角线相等的菱形是正方形 |
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com