【题目】如图1,是用量角器一个角的操作示意图,量角器的读数从M点开始(即M点的读数为0),如图2,把这个量角器与一块30°(∠CAB=30°)角的三角板拼在一起,三角板的斜边AB与量角器所在圆的直径MN重合,现有射线C绕点C从CA开始沿顺时针方向以每秒2°的速度旋转到与CB,在旋转过程中,射线CP与量角器的半圆弧交于E.连接BE.
(1)当射线CP经过AB的中点时,点E处的读数是 ,此时△BCE的形状是 ;
(2)设旋转x秒后,点E处的读数为y,求y与x的函数关系式;
(3)当CP旋转多少秒时,△BCE是等腰三角形?
【答案】(1)60°,直角三角形;(2)y=4x(0≤x≤45);(3)7.5秒或30秒
【解析】
(1)根据圆周角定理即可解决问题;
(2)如图2﹣2中,由题意∠ACE=2x,∠AOE=y,根据圆周角定理可知∠AOE=2∠ACE,可得y=2x(0≤x≤45);
(3)分两种情形分别讨论求解即可;
解:(1)如图2﹣1中,
∵∠ACB=90°,OA=OB,
∴OA=OB=OC,
∴∠OCA=∠OAC=30°,
∴∠AOE=60°,
∴点E处的读数是60°,
∵∠E=∠BAC=30°,OE=OB,
∴∠OBE=∠E=30°,
∴∠EBC=∠OBE+∠ABC=90°,
∴△EBC是直角三角形;
故答案为60°,直角三角形;
(2)如图2﹣2中,
∵∠ACE=2x,∠AOE=y,
∵∠AOE=2∠ACE,
∴y=4x(0≤x≤45).
(3)①如图2﹣3中,当EB=EC时,EO垂直平分线段BC,
∵AC⊥BC,
∵EO∥AC,
∴∠AOE=∠BAC=30°,
∴∠ECA=∠AOE=15°,
∴x=7.5.
②若2﹣4中,当BE=BC时,
易知∠BEC=∠BAC=∠BCE=30°,
∴∠OBE=∠OBC=60°,
∵OE=OB,
∴△OBE是等边三角形,
∴∠BOE=60°,
∴∠AOB=120°,
∴∠ACE=∠ACB=60°,
∴x=30,
综上所述,当CP旋转7.5秒或30秒时,△BCE是等腰三角形;
科目:初中数学 来源: 题型:
【题目】我们将如图所示的两种排列形式的点的个数分别称作“三角形数”(如1,3,6,10…)和“正方形数”(如1,4,9,16…),在小于200的数中,设最大的“三角形数”为m,最大的“正方形数”为n,则m+n的值为( )
A. 33 B. 301 C. 386 D. 571
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,反比例函数y=(x<0)的图象过格点(网格线的交点)P.
(1)求反比例函数的解析式;
(2)在图中用直尺和2B铅笔画出两个三角形(不写画法),要求每个三角形均需满足下列两个条件:
①三个顶点均在格点上,且其中两个顶点分别是点O,点P;
②三角形的面积等于|k|的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在平面直角坐标系中,抛物线ybx+c,经过点A(1,3)、B(0,1),过点A作x轴的平行线交抛物线于另一点C
(1)求抛物线的表达式及其顶点坐标;
(2)如图1,点G是BC上方抛物线上的一个动点,分别过点G作GH⊥BC于点H、作GE⊥x轴于点E,交BC于点F,在点G运动的过程中,△GFH的周长是否存在最大值?若存在,求出这个最大值;若不存在,请说明理由;
(3)如图2,过A点的直线垂直x轴于点M,点N为直线AM上任意一点,当△BCN为直角三角形时,请直接写出点N的坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知:在Rt△ABC中,∠ACB=90°,AC=BC,点D在直线AB上,连接CD,并把CD绕点C逆时针旋转90°到CE.
(1)如图1,点D在AB边上,线段BD、BE、CD的数量关系为 .
(2)如图2,点D在点B右侧,请猜想线段BD、BE、CD的数量关系,并证明你的结论.
(3)如图3,点D在点A左侧,BC=,AD=BE=1,请直接写出线段EC的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,A(0,4),B(3,4),P 为线段 OA 上一动点,过 O,P,B 三点的圆交 x 轴正半轴于点 C,连结 AB, PC,BC,设 OP=m.
(1)求证:当 P 与 A 重合时,四边形 POCB 是矩形.
(2)连结 PB,求 tan∠BPC 的值.
(3)记该圆的圆心为 M,连结 OM,BM,当四边形 POMB 中有一组对边平行时,求所有满足条件的 m 的值.
(4)作点 O 关于 PC 的对称点O ,在点 P 的整个运动过程中,当点O 落在△APB 的内部 (含边界)时,请写出 m 的取值范围.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知点A(12,0),O为坐标原点,P是线段OA上任一点(不含端点O、A),二次函数y1的图象过P、O两点,二次函数y2的图象过P、A两点,它们的开口均向下,顶点分别为B、C,射线OB与射线AC相交于点D.则当OD=AD=9时,这两个二次函数的最大值之和等于( )
A. 8 B. 3 C. 2 D. 6
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】定义:两条长度相等,且它们所在的直线互相垂直,我们称这两条线段互为等垂线段.如图①,直线y=2x+4与x轴交于点A,与y轴交于点 B.
(1)若线段AB与线段BC互为等垂线段.求A、B、C的坐标.
(2)如图②,点D是反比例函数y=﹣的图象上任意一点,点E(m,1),线段DE与线段AB互为等垂线段,求m的值;
(3)抛物线y=ax2+bx+c(a≠0)经过A、B两点.
①用含a的代数式表示b.
②点P为平面直角坐标系内的一点,在抛物线上存在点Q,使得线段PQ与线段AB互为等垂线段,且它们互相平分,请直接写出满足上述条件的a值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在直角坐标系中,⊙M经过原点O(0,0),点A(,0)与点B(0,-),点D在劣弧上,连结BD交x轴于点C,且∠COD=∠CBO.
(1)求⊙M的半径;
(2)求证:BD平分∠ABO;
(3)在线段BD的延长线上找一点E,使得直线AE恰为⊙M的切线,求此时点E的坐标.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com