【题目】如图,,,以为直径作半圆,圆心为点;以点为圆心,为半径作,过点作的平行线交两弧于点、,则图中阴影部分的面积是( )
A.B.C.D.
【答案】A
【解析】
如图,连接CE.图中S阴影=S扇形BCES扇形BODS△OCE.根据已知条件易求得OB=OC=OD=4,BC=CE=8,∠ECB=60°,OE=4,所以由扇形面积公式、三角形面积公式进行解答即可.
解:如图,连接CE.
∵AC⊥BC,AC=BC=8,以BC为直径作半圆,圆心为点O;以点C为圆心,BC为半径作弧AB,
∴∠ACB=90°,OB=OC=OD=4,BC=CE=8.
又∵OE∥AC,
∴∠ACB=∠COE=90°.
∴在Rt△OEC中,OC=4,CE=8,
∴∠CEO=30°,∠ECB=60°,OE=4,
∴S阴影=S扇形BCES扇形BODS△OCE
=
=
故选:A.
科目:初中数学 来源: 题型:
【题目】如图,菱形ABCD顶点A在例函数y=(x>0)的图象上,函数 y=(k>3,x>0)的图象关于直线AC对称,且经过点B、D两点,若AB=2,∠DAB=30°,则k的值为______.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】小刘对本班同学的业余兴趣爱好进行了一次调查,她根据采集到的数据,绘制了下面的图1和图2.
请你根据图中提供的信息,解答下列问题:
(1)在图1中,将“书画”部分的图形补充完整;
(2)在图2中,求出“球类”部分所对应的圆心角的度数,并分别写出爱好“音乐”、“书画”、“其它”的人数占本班学生数的百分数;
(3)观察图1和图2,你能得出哪些结论(只要写出一条结论).
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在平面内,给定不在同一条直线上的点(如图所示),点到点的距离均等于(为常数),到点的距离等于的所有点组成图形,的平分线交图形于点,连接.
(1)求证:;
(2)过点作,垂足为,作,垂足为,延长交图形于点,连接.若,求直线与图形的公共点个数.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某市场将进货价为40元/件的商品按60元/件售出,每星期可卖出300件.市场调查反映:如调整价格,每涨价1元/件,每星期该商品要少卖出10件.
(1)请写出该商场每月卖出该商品所获得的利润y(元)与该商品每件涨价x(元)间的函数关系式;
(2)每月该商场销售该种商品获利能否达到6300元?请说明理由;
(3)请分析并回答每件售价在什么范围内,该商场获得的月利润不低于6160元?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在ABCO中,A(1,2),B(5,2),将ABCO绕O点逆时针方向旋转90°到A′B′C′O的位置,则点B′的坐标是( )
A.(﹣2,4)B.(﹣2,5)C.(﹣1,5)D.(﹣1,4)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某校计划一次性购买排球和篮球,每个篮球的价格比排球贵30元;购买2个排球和3个篮球共需340元.
(1)求每个排球和篮球的价格:
(2)若该校一次性购买排球和篮球共60个,总费用不超过3800元,且购买排球的个数少于39个.设排球的个数为m,总费用为y元.
①求y关于m的函数关系式,并求m可取的所有值;
②在学校按怎样的方案购买时,费用最低?最低费用为多少?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】图1是某浴室花洒实景图,图2是该花洒的侧面示意图.已知活动调节点B可以上下调整高度,离地面CD的距离BC=160cm.设花洒臂与墙面的夹角为α,可以扭动花洒臂调整角度,且花洒臂长AB=30cm.假设水柱AE垂直AB直线喷射,小华在离墙面距离CD=120cm处淋浴.
(1)当α=30°时,水柱正好落在小华的头顶上,求小华的身高DE.
(2)如果小华要洗脚,需要调整水柱AE,使点E与点D重合,调整的方式有两种:
①其他条件不变,只要把活动调节点B向下移动即可,移动的距离BF与小华的身高DE有什么数量关系?直接写出你的结论;
②活动调节点B不动,只要调整α的大小,在图3中,试求α的度数.
(参考数据:≈1.73,sin8.6°≈0.15,sin36.9°≈0.60,tan36.9°≈0.75)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】平移抛物线得到抛物线,使得抛物线的顶点关于原点对称的点仍在抛物线上,下列的平移中,不能得到满足条件的抛物线的是( )
A.向右平移1个单位,再向下平移2个单位
B.向左平移1个单位,再向下平移2个单位
C.向左平移个单位,再向下平移个单位
D.向左平移3个单位,再向下平移9个单位
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com