精英家教网 > 初中数学 > 题目详情

如图,一大桥有一段抛物线型的拱梁,抛物线的表达式为y=ax2+bx+c,小王骑自行车从O匀速沿直线到拱梁一端A,再匀速通过拱梁部分的桥面AC,小王从O到A用了2秒,当小王骑自行车行驶10秒时和20秒时拱梁的高度相同,则小强骑自行车通过拱梁部分的桥面AC共需         秒.


26。

【考点】二次函数的应用


练习册系列答案
相关习题

科目:初中数学 来源: 题型:


如图,抛物线y=x2通过平移得到抛物线m,抛物线m经过点B(6,0)和O(0,0),它的顶点为A,以O为圆心,OA为半径作圆,在第四象限内与抛物线y=x2交于点C,连接AC,则图中阴影部分的面积为       

查看答案和解析>>

科目:初中数学 来源: 题型:


均匀地向一个容器注水,最后把容器注满。在注水过程中,水面高度h随时间t的变化规律如图所示,则这个容器的形状是下列的【    】

 A.      B.       C.      D.

查看答案和解析>>

科目:初中数学 来源: 题型:


如图,反比例函数的图象与正比例函数的图象交于点(2,1),则使y1>y2的x的取值范围是【    】

A.0<x<2   B.x>2     C.x>2或-2<x<0    D.x<-2或0<x<2

查看答案和解析>>

科目:初中数学 来源: 题型:


已知函数的图象如图所示,根据其中提供的信息,可求得使成立的的取值范围是(  )

A.                 B.    

C.                     D.

查看答案和解析>>

科目:初中数学 来源: 题型:


如图,平行四边形ABCD中,,点的坐标是,以点为顶点的抛物线经过轴上的点.

(1)求点的坐标;

(2)若抛物线向上平移后恰好经过点,求平移后抛物线的解析式.

查看答案和解析>>

科目:初中数学 来源: 题型:


 如图,已知二次函数图像的顶点M在反比例函数上,且与轴交于A,B两点。

(1)若二次函数的对称轴为,试的值,并求AB的长;

(2)若二次函数的对称轴在轴左侧,与轴的交点为N,当NO+MN取最小值时,试求二次函数的解析式。

查看答案和解析>>

科目:初中数学 来源: 题型:


如图,已知△ABC中,AB=,AC=,BC=6,点M在AB边上,且AM=BM,在线段AC上取点N,使△AMN与△ABC相似,求线段MN的长。

查看答案和解析>>

科目:初中数学 来源: 题型:


已知抛物线的顶点在坐标轴上.

(1)求的值;

(2)时,抛物线向下平移个单位后与抛物线关于轴对称,且过点,求的函数关系式;

(3)时,抛物线的顶点为,且过点.问在直线 上是否存在一点使得△的周长最小,如果存在,求出点的坐标, 如果不存在,请说明理由.

查看答案和解析>>

同步练习册答案