【题目】如图①所示的旅行箱的箱盖和箱底两部分的厚度相同,四边形ABCD为形如矩形的旅行箱一侧的示意图,F为AD的中点,EF∥CD.现将放置在地面上的箱子打开,使箱盖的一端点D靠在墙上,O为墙角,图②为箱子打开后的示意图.箱子厚度AD=30cm,宽度AB=50cm.
(1)图②中,EC=________cm,当点D与点O重合时,AO的长为________cm;
(2)若∠CDO=60°,求AO的长(结果取整数值,参考数据:sin60°≈0.87,cos60°=0.5,tan60°≈1.73,可使用科学计算器).
【答案】(1)15,100(2)101cm
【解析】试题分析: (1)根据EC=BC=AD,AO=AB+CD=2AB即可解决问题.
(2)过点C作OA的平行线,分别交BE和OD于H,G,根据∠CDO=60°,分别求出CG、HC,即可解决问题.
试题解析:
(1)根据图①,EF∥AB∥CD,F为AD的中点,∴DF=AF,∴EC=EB=BC=AD=15cm.根据图②,当点D与点O重合时,BO=CD.∵CD=AB=50cm,∴AO=AB+BO=AB+CD=50+50=100(cm).
故答案为15,100.
(2)过点C作OA的平行线,分别交BE和OD于H,G.
∵EB⊥OA,OD⊥OA,
又∵∠O=90°,
∴四边形BOGH是矩形.
∴BO=HG=HC+CG.
∵∠CGD=∠ECD=90°,∠CDO=60°,
∴∠DCG=90°-∠CDG=30°,
∴∠ECH=180°-∠ECD-∠DCG=180°-90°-30°=60°.
在Rt△CDG和Rt△ECH中,CD=50cm,EC=15cm,
∴HC=EC·cos∠ECH=7.5cm,
CG=CD·sin∠CDG≈50×0.87=43.5(cm),
∴AO=AB+BO=AB+HC+CG≈101cm.
点睛: 本题考查解直角三角形的应用,解题的关键是理解题意,学会添加常用辅助线解决问题,通过添加辅助线构造直角三角形以及特殊四边形,属于中考常考题型.
科目:初中数学 来源: 题型:
【题目】明代珠算大师程大位著有《珠算统宗》一书,有下面的一道题:“隔墙听得客分银,不知人数不知银,七两分之多四两,九两分之少半斤(1斤等于16两)”.据此可知,客有______人,银有______两.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】观察下列分解因式的过程:
x2+2ax﹣3a2
=x2+2ax+a2﹣a2﹣3a2(先加上a2,再减去a2)
=(x+a)2﹣4a2(运用完全平方公式)
=(x+a+2a)(x+a﹣2a )(运用平方差公式)
=(x+3a)(x﹣a)
像上面那样通过加减项配出完全平方式后再把二次三项式分解因式的方法,叫做配方法.
请你用配方法分解因式:m2﹣4mn+3n2
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在8×8的正方形网格中,△CAB和△DEF的顶点都在边长为1的小正方形的顶点上.
(1)填空:AC=________,AB=________;
(2)判断△CAB和△DEF是否相似,并说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】下列说法正确的是( )
A. 三角形可以分为等边三角形、直角三角形、钝角三角形
B. 如果一个三角形的一个外角大于与它相邻的内角,则这个三角形为锐角三角形
C. 各边都相等的多边形是正多边形
D. 五边形有五条对角线
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在Rt△ABC中,∠A=90°,AB=AC,BC=20,DE是△ABC的中位线,点M是边BC上一点,BM=3,点N是线段MC上的一个动点,连接DN,ME,DN与ME相交于点O.若△OMN是直角三角形,则DO的长是________________.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com