【题目】如图,在平面直角坐标系xOy中,矩形OABC的顶点A、C在坐标轴上,点A的坐标为(4,0).点C的坐标为(0,3).将矩形OABC绕点O逆时针旋转得到矩形OEFG,点B的对应点F恰好落在y轴正半轴上.将矩形OEFG沿y轴向下平移,当点E到达x轴上时,运动停止.设平移的距离为m,两矩形重叠面积为S.
(1)求点E的坐标;
(2)求S与m的函数关系式,并直接写出m的取值范围.
科目:初中数学 来源: 题型:
【题目】某超市销售一种书包,平均每天可销售100件,每件盈利30元.试营销阶段发现:该商品每件降价1元,超市平均每天可多售出10件.设每件商品降价元时,日盈利为元.据此规律,解决下列问题:
(1)降价后每件商品盈利 元,超市日销售量增加 件(用含的代数式表示);
(2)在上述条件不变的情况下,求每件商品降价多少元时,超市的日盈利最大?最大为多少元?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】新华商场销售某种冰箱,每台进价为2500元,销售价为2900元,平均每天能售出8台;调查发现,当销售价每降低50元,平均每天就能多售出4台.商场要想使这种冰箱的销售利润平均每天达到5000元,每台冰箱应该降价多少元?若设每台冰箱降价x元,根据题意可列方程( )
A. (2900-x)(8+4×)=5000 B. (400-x)(8+4×)=5000
C. 4(2900-x)(8+)=5000 D. 4(400-x)(8+)=5000
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知关于x的方程x2﹣(2k+1)x+k2+1=0.
(1)若方程有两个不相等的实数根,求k的取值范围;
(2)若方程的两根恰好是一个矩形两邻边的长,且k=2,求该矩形的对角线L的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,△ABC内接于⊙O,AB是⊙O直径,∠ACB的平分线交⊙O于D,若AC=m,BC=n,则CD的长为_____(用含m、n的代数式表示).
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】勤俭节约一直是中华民族的传统美德,某中学校团委准备以“勤俭节约”为主题开展一次演讲比赛,为此先对同学们每月零花钱的数额进行一些了解,随机调查了本校部分同学,根据调查结果,绘制出了如下两个尚不完整的统计图表.
组别 | 分组(单位:元) | 人数 |
A | 0≤x<30 | 4 |
B | 30≤x<60 | a |
C | 60≤x<90 | b |
D | 90≤x<120 | 8 |
E | 120≤x<150 | 2 |
根据以上图表,解答下列问题:
(1)填空:这次调查的同学共有 人,a+b= ,m= ;
(2)求扇形统计图中扇形B的圆心角的度数;
(3)该校共有1200名学生,请估计每月零花钱的数额在60≤x<90范围的人数.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知,如图,在△ADC中,∠ADC=90°,以DC为直径作半圆⊙O,交边AC于点F,点B在CD的延长线上,连接BF,交AD于点E,∠BED=2∠C.
(1)求证:BF是⊙O的切线;
(2)若BF=FC,,求⊙O的半径.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某博物馆每周都吸引大量中外游客前来参观,如果游客过多,对馆中的珍贵文物会产生不利影响,但同时考虑到文物的修缮和保存费用问题,还要保证一定的门票收入,因此,博物馆采取了涨浮门票价格的方法来控制参观人数,在该方法实施过程中发现:每周参观人数与票价之间存在着如图所示的一次函数关系.在这种情况下,如果要保证每周万元的门票收入,那么每周应限定参观人数是多少?门票价格应是多少.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,BC⊥y轴,BC<OA,点A、点C分别在x轴、y轴的正半轴上,D是线段BC上一点,BD=OA=2,AB=3,∠OAB=45°,E、F分别是线段OA、AB上的两动点,且始终保持∠DEF=45°,将△AEF沿一条边翻折,翻折前后两个三角形组成的四边形为菱形,则线段OE的值为_____.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com