精英家教网 > 初中数学 > 题目详情

【题目】如图1,等边△ABC的边长为3,分别以顶点B、A、C为圆心,BA长为半径作弧AC、弧CB、弧BA,我们把这三条弧所组成的图形称作莱洛三角形,显然莱洛三角形仍然是轴对称图形.设点I为对称轴的交点,如图2,将这个图形的顶点A与等边△DEF的顶点D重合,且ABDE,DE=2π,将它沿等边△DEF的边作无滑动的滚动,当它第一次回到起始位置时,这个图形在运动中扫过区域面积是(  )

A. 18π B. 27π C. π D. 45π

【答案】B

【解析】

先判断出莱洛三角形等边DEF绕一周扫过的面积如图所示,利用矩形的面积和扇形的面积之和即可.

如图1中,

∵等边DEF的边长为,等边ABC的边长为3,

S矩形AGHF=2π×3=6π,

由题意知,ABDE,AGAF,
∴∠BAG=120°,

S扇形BAG==3π,

∴图形在运动过程中所扫过的区域的面积为3(S矩形AGHF+S扇形BAG)=3(6π+3π)=27π;

故选:B.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】已知OA,OB是⊙O的半径,且OAOB,垂足为O,P是射线OA上的一点(点A除外),直线BP交⊙O于点Q,过Q作⊙O的切线交射线OA于点E.

(1)如图①,点P在线段OA上,若∠OBQ=15°,求∠AQE的大小;

(2)如图②,点POA的延长线上,若∠OBQ=65°,求∠AQE的大小.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某甜品店用两种原料制作成甲、乙两款甜品进行销售,制作每份甜品的原料所需用量如下表所示.该店制作甲款甜品份,乙款甜品份,共用去原料2000克.

原料

款式

原料

(克)

原料

(克)

甲款甜品

30

15

乙款甜品

10

20

1)求关于的函数表达式;

2)已知每份甲甜品的利润为5元,每份乙甜品的利润为2.假设两款甜品均能全部卖出.若获得总利润不少于360元,则至少要用去原料多少克?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在等边中,,将线段沿翻折,得到线段,连结于点,连结以下说法:①,②,③,④中,正确的有(

A.B.C.D.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图①,在正方形ABCD中,点E与点F分别在线段AC、BC上,且四边形DEFG是正方形.

(1)试探究线段AECG的关系,并说明理由.

(2)如图②若将条件中的四边形ABCD与四边形DEFG由正方形改为矩形,AB=3,BC=4.

①线段AE、CG在(1)中的关系仍然成立吗?若成立,请证明,若不成立,请写出你认为正确的关系,并说明理由.

②当△CDE为等腰三角形时,求CG的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某高校学生会在某天午餐后,随机调查了部分同学就餐饭菜的剩余情况,并将结果统计后绘制成了如图所示的不完整的统计图.

(1)这次被调查的同学共有名;

(2)补全条形统计图;

(3)计算在扇形统计图中剩大量饭菜所对应扇形圆心角的度数;

(4)校学生会通过数据分析,估计这次被调查的所有学生一餐浪费的食物可以供200人用一餐.据此估算,该校20000名学生一餐浪费的食物可供多少人食用一餐?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,抛物线y=ax2+ax﹣12a(a<0)与x轴交于A、B两点(AB的左侧),与y轴交于点C,点M是第二象限内抛物线上一点,BMy轴于N.

(1)求点A、B的坐标;

(2)BN=MN,且SMBC=,求a的值;

(3)若∠BMC=2ABM,求的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某中学决定在·四艺术周为一个节目制作AB两种道具,共80个. 制作的道具需要甲、乙两种材料组合而成,现有甲种材料700件,乙种材料500件,已知组装AB两种道具所需的甲、乙两种材料,如下表所示:

甲种材料(件)

乙种材料(件)

A道具

6

8

B道具

10

4

经过计算,制作一个A道具的费用为5元,一个B道具的费用为4.5元. 设组装A种道具x个,所需总费用为y元.

1)求yx的函数关系式,并求出x的取值范围;

2)问组装A种道具多少个时,所需总费用最少,最少费用是多少?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,AP,CP分别平分∠BAC,∠ACD,∠P=90°,设∠BAP=α.

(1)用α表示∠ACP;

(2)求证:ABCD;

(3)若APCF,求证:FC平分∠DCE.

查看答案和解析>>

同步练习册答案