【题目】如图,△ABC中,点O是边AC上一个动点,过O作直线MN∥BC.设MN交∠ACB的平分线于点E,交∠ACB的外角平分线于点F.
(1)求证:OE=OF;
(2)若CE=12,CF=5,求OC的长;
(3)当点O在边AC上运动到什么位置时,四边形AECF是矩形?并说明理由.
【答案】
(1)证明:∵MN交∠ACB的平分线于点E,交∠ACB的外角平分线于点F,
∴∠2=∠5,∠4=∠6,
∵MN∥BC,
∴∠1=∠5,∠3=∠6,
∴∠1=∠2,∠3=∠4,
∴EO=CO,FO=CO,
∴OE=OF
(2)解:∵∠2=∠5,∠4=∠6,
∴∠2+∠4=∠5+∠6=90°,
∵CE=12,CF=5,
∴EF= =13,
∴OC= EF=6.5
(3)解:当点O在边AC上运动到AC中点时,四边形AECF是矩形.
证明:当O为AC的中点时,AO=CO,
∵EO=FO,
∴四边形AECF是平行四边形,
∵∠ECF=90°,
∴平行四边形AECF是矩形.
【解析】(1)根据平行线的性质以及角平分线的性质得出∠1=∠2,∠3=∠4,进而得出答案;(2)根据已知得出∠2+∠4=∠5+∠6=90°,进而利用勾股定理求出EF的长,即可得出CO的长;(3)根据平行四边形的判定以及矩形的判定得出即可.
【考点精析】解答此题的关键在于理解平行线的性质的相关知识,掌握两直线平行,同位角相等;两直线平行,内错角相等;两直线平行,同旁内角互补,以及对直角三角形斜边上的中线的理解,了解直角三角形斜边上的中线等于斜边的一半.
科目:初中数学 来源: 题型:
【题目】在平面直角坐标系中,边长为 的正方形ABCD的对角线AC,BD相交于点E,顶点B,A在x,y轴正半轴上运动(x轴的正半轴,y轴的正半轴都不包含原点O)顶点C、D都在第一象限.
(1)如图1,当∠ABO=45°时,求直线OE的解析式,并说明OE平分∠AOB;
(2)当∠ABO≠45°时(如图2所示):OE是否还平分∠AOB仍然成立?若是,请证明;若不是,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】学生对小区居民的健身方式进行调查,并将调查结果绘制成如图两幅不完整的统计图.
请根据所给信息解答下列问题:
(1)本次共调查多少人;
(2)补全图(1)中的条形统计图,图(2)中“跑步”所在扇形对应的圆心角度数是多少?
(3)估计2000人中喜欢打太极的大约有多少人?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】A,B,C,D四支足球队分在同一小组进行单循环足球比赛,争夺出线权,比赛规则规定:胜一场得3分,平一场得1分,负一场得0分,小组中积分最高的两个队(有且只有两个队)出线,小组赛结束后,如果A队没有全胜,那么A队的积分至少要几分才能保证一定出线?请说明理由.
[注:单循环比赛就是小组内的每一个队都要和其他队赛一场].
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】下列说法正确的是( )
A. 两条射线组成的图形叫做角 B. 角的大小在放大镜下会发生改变
C. 角的大小与角的两边画出部分的长短无关 D. 直线是一个角
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】 (2016湖北鄂州第14题)如图,已知直线 与x轴、y轴相交于P、Q两点,与y=的图像相交于A(-2,m)、B(1,n)两点,连接OA、OB. 给出下列结论: ①k1k2<0;②m+n=0; ③S△AOP= S△BOQ;④不等式k1x+b>的解集是x<-2或0<x<1,其中正确的结论的序号是 .
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com