【题目】如图,正方形ABCD的边长AB是方程的一个根,动点P从A至B以3cm/s的速度移动,动直线EF从与AB重合的位置开始向上以1cm/s速度移动(EF∥AB),EF交AD、AC、BC于E、M、F。设运动时间为t秒.
(1)当t=1时,四边形MFBP的面积为 .用t表示△APM的面积为 .
(2)在某一时刻t,使△APM与四边形MFBP的面积相等,求t的值.
【答案】(1)19,;(2)6.
【解析】
(1)先解一元二次方程得出正方形的边长,然后分别用t表示出AP,AE,EM,MF,FB,PB.根据梯形的面积公式和三角形的面积公式计算即可;
(2)根据“△APM与四边形MFBP的面积相等”列方程,求解即可.
(1)(x-21)(x+1)=0,解得:x=21或x=-1(舍去),∴正方形的边长为21.AP=3t,AE=BF=t.
∵ABCD是正方形,∴∠DAC=45°,∴△MEA是等腰直角三角形,∴EM=EA=t,∴MF=21-t,PB=21-3t,∴四边形MFBP的面积=(MF+PB)BF=(21-t+21-3t)t=,当t=1时,四边形MFBP的面积=21-2=19.
△APM的面积=APAE=3tt=.
故答案为:19,.
(2)由(1)可得:,解得:t=0(舍去),t=6.
答:t的值为6.
科目:初中数学 来源: 题型:
【题目】如图,在ABCD中,AC,BD相交于点O,点E是OA的中点,连接BE并延长交AD于点F,已知S△AEF=4,则下列结论:①;②S△BCE=36;③S△ABE=12;④△AEF~△ACD,其中一定正确的是( )
A. ①②③④ B. ①④ C. ②③④ D. ①②③
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知关于x的方程
(1)求证:不论k取什么实数值,这个方程总有实数根;
(2)若等腰三角形ABC的一边长为,另两边的长b、c恰好是这个方程的两个根,求△ABC的周长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在平面直角坐标系中,先将抛物线y=2x2﹣4x关于y轴作轴对称变换,再将所得的抛物线,绕它的顶点旋转180°,那么经两次变换后所得的新抛物线的函数表达式为( )
A.y=﹣2x﹣4xB.y=﹣2x+4x
C.y=﹣2x﹣4x﹣4D.y=﹣2x+4x+4
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图1,在平面直角坐标系中,直线y=﹣x+与x轴交于点A,与y轴交于点B;抛物线y=ax2+bx+(a≠0)过A,B两点,与x轴交于另一点C(﹣1,0),抛物线的顶点为D.
(1)求出A,B两点的坐标;
(2)求抛物线的解析式及顶点D的坐标;
(3)在直线AB上方的抛物线上有一动点E,求出点E到直线AB的距离的最大值;
(4)如图2,直线AB与抛物线的对称轴相交于点F,点P在坐标轴上,且点P到直线BD,DF的距离相等,请直接写出点P的坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】一种进价为每件40元的T恤,若销售单价为60元,则每周可卖出300件.为提高利润,欲对该T恤进行涨价销售.经过调查发现:每涨价1元,每周要少卖出10件.请确定该T恤涨价后每周的销售利润y(元)与销售单价x(元)之间的函数关系式,并求销售单价定为多少元时,每周的销售利润最大?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,⊙O在矩形ABCD内,且与AB、BC边都相切,E是BC上一点,将△DCE沿DE对折,点C的对称点F恰好落在⊙O上,已知AB=20,BC=25,CE=10,则⊙O的半径为______.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在矩形ABCD中,BD的垂直平分线分别交AB、CD、BD于E、F、O,连接DE、BF.
(1)求证:四边形BEDF是菱形;
(2)若AB=8cm,BC=4cm,求四边形DEBF的面积.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】(6分)在一个不透明的纸箱里装有红、黄、蓝三种颜色的小球,它们除颜色外完全相同,其中红球有2个,黄球有1个,蓝球有1个.现有一张电影票,小明和小亮决定通过摸球游戏定输赢(赢的一方得电影票).游戏规则是:两人各摸1次球,先由小明从纸箱里随机摸出1个球,记录颜色后放回,将小球摇匀,再由小亮随机摸出1个球并记录颜色.若两人摸到的球颜色相同,则小明赢,否则小亮赢.这个游戏规则对双方公平吗?请你利用树状图或列表法说明理由
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com