【题目】如图,在菱形ABCD中,AB=5cm,BD=8cm,动点P从点B开始沿BC边匀速运动,动点Q从点D开始沿对角线DB匀速运动,它们的运动速度均为1cm/s,过点Q作QE⊥CD,与CD交于点E,连接PQ,点P和点Q同时出发,设运动时间为t(s),0<t≤5.
(1)当PQ∥CD时,求t的值;
(2)设四边形PQEC的面积为S(cm2),求S与t之间的函数关系式;
(3)当P,Q两点运动到使∠PQE=60°时,求四边形PQEC的面积;
(4)是否存在某一时刻t,使PQ+QE的值最小?若存在,请求t的值,并求出此时PQ+QE的值;若不存在,请说明理由.
【答案】(1)t=;(2)S=t+12;(3);(4)存在,理由见解析.
【解析】
(1)根据平行线分线段成比例定理得:,代入计算可得t的值;
(2)先根据三角函数表示PH和EQ、DE的长,根据面积差表示S与t之间的函数关系式;
(3)如图2,作辅助线,构建相似三角形和60度的直角三角形,根据平行 线分线段成比例定理列式为:,可得MQ=BM=,证明△QMP∽△FCP,计算FC的长,根据FE=QE,列方程可得t的值,代入(2)中S与t的关系式可得结论;
(4)过Q作QF⊥AD于F,当P、Q、F三点共线时,PQ+QE的值最小,最小值就是菱形的高线PF.
解:(1)由题意得:PB=DQ=t,
∵BD=8,
∴BQ=8﹣t,
当PQ∥CD时,,
,t=;
(2)如图1,过P作PH⊥BD于H,连接AC交BD于点O,
∵四边形ABCD是菱形,
∴AC⊥BD,
∴∠BOC=∠COD=90°,
∵AB=BC=CD=5,OB=OD=BD=4,
∴OC=3,
∴sin∠HBP=,
∵PB=t,
∴PH=t,同理得EQ=,
∴S=S△BCD﹣S△BPQ﹣S△DEQ=;
(3)如图2,过Q作QM∥CD,交BC于M,延长QP与EC交于点F,
∴,即,
∴MQ=BM=,
∴,
∵MQ∥FC,
∴△QMP∽△FCP,
∴,即,
Rt△FQE中,∵∠PQE=60°,
由(2)知:四边形PQEC的面积=,
∴四边形PQEC的面积=;
(可以过P作CD的平行线);
(4)存在,
如图4,过Q作QF⊥AD于F,
∵四边形ABCD是菱形,
∴BD平分∠ADC,
∵QE⊥CD,
∴QE=QF,
∴当P、Q、F三点共线时,PQ+QE的值最小,
∵AD∥BC,
∴PF⊥BC,
S菱形ABCD=PFBC=,
∵PF=PQ+FQ=PQ+EQ=
∴存在,当t=s时,使PQ+QE的值最小,最小值是.
科目:初中数学 来源: 题型:
【题目】2018年某新品牌牛奶公司为了宣传其公司牛奶的销售量大,把该品牌牛奶的销售量与其他品牌牛奶的销售量对比绘制了如图K-28-3所示的广告,并形象地用牛奶瓶代替条形图,从销售量来看,新品牌牛奶的销售量是其他品牌牛奶的2倍.请分析这个图合理吗.
答:________,理由是______________________________.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】为提升城市品味、改善居民生活环境,我省某市拟对某条河沿线十余个地块进行片区改造,其中道路改造是难度较大的工程如图是某段河道坡路的横截面,从点A到点B,从点B到点C是两段不同坡度的坡路,CM是一段水平路段,CM与水平地面AN的距离为12米.已知山坡路AB的路面长10米,坡角BAN=15°,山坡路BC与水平面的夹角为30°,为了降低坡度,方便通行,决定降低坡路BC的坡度,得到新的山坡AD,降低后BD与CM相交于点D,点D,A,B在同一条直线上,即∠DAN=15°.为确定施工点D的位置,求整个山坡路AD的长和CD的长度(sin15°≈0.26,cos15°≈0.97,tan15°≈0.27,sin30°=0.50,cos30°≈0.87,tan30°≈0.58结果精确到0.1米)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,校园内有两幢高度相同的教学楼AB,CD,大楼的底部B,D在同一平面上,两幢楼之间的距离BD长为24米,小明在点E(B,E,D在一条直线上)处测得教学楼AB顶部的仰角为45°,然后沿EB方向前进8米到达点G处,测得教学楼CD顶部的仰角为30°.已知小明的两个观测点F,H距离地面的高度均为1.6米,求教学楼AB的高度AB长.(精确到0.1米)参考值:≈1.41,≈1.73.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系xOy中,过点A(﹣6,0)的直线l1与直线l2:y=2x相交于点B(m,6)
(1)求直线l1的表达式
(2)直线l1与y轴交于点M,求△BOM的面积;
(3)过动点P(m,0)且垂于x轴的直线与l1,l2的交点分别为C,D,当点C位于点D下方时,写出n的取值范围.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某校在宣传“民族团结”活动中,采用四种宣传形式:A.器乐,B.舞蹈,C.朗诵,D.唱歌.每名学生从中选择并且只能选择一种最喜欢的,学校就宣传形式对学生进行了抽样调查,并将调查结果绘制了如下两幅不完整的统计图.
请结合图中所给信息,解答下列问题:
(1)本次调查的学生共有_____人;
(2)补全条形统计图;
(3)该校共有1200名学生,请估计选择“唱歌”的学生有多少人?
(4)七年一班在最喜欢“器乐”的学生中,有甲、乙、丙、丁四位同学表现优秀,现从这四位同学中随机选出两名同学参加学校的器乐队,请用列表或画树状图法求被选取的两人恰好是甲和乙的概率.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知正方形ABCD的边长为1,正方形CEFG的面积为,点E在CD边上,点G在BC的延长线上,设以线段AD和DE为邻边的矩形的面积为,且.
⑴求线段CE的长;
⑵若点H为BC边的中点,连结HD,求证:.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知正方形MNKO和正六边形ABCDEF边长均为1,把正方形放在正六边形外边,使OK边与AB边重合,如图所示,按下列步骤操作:将正方形在正六边形外绕点B顺时针旋转,使KN边与BC边重合,完成第一次旋转;再绕点C顺时针旋转,使NM边与CD边重合,完成第二次旋转;………在这样连续6次旋转的过程中,点M在图中直角坐标系中的纵坐标可能是( )
A. B. ﹣2.2C. 2.3D. ﹣2.3
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com