精英家教网 > 初中数学 > 题目详情

【题目】在矩形ABCD中,AB3BC4,点EF分别为BCAC上的两个动点,将△CEF沿EF折叠,点C的对应点为G,若点G落在射线AB上,且△AGF恰为直角三角形,则线段CF的长为_____

【答案】

【解析】

分两种情况讨论,由勾股定理可得AC5,通过证明AGF∽△ABCAFG∽△ABC,由相似三角形的性质可求CF的长.

如图,当∠AGF为直角时,设CFx

RtABC中,AB3BC4

AC5

由折叠的性质知GFFC

∵∠AGF=∠ABC90°

GFEC

∴△AGF∽△ABC

x

CF的长为

如图,当∠AFG为直角时,设CFy

∵∠BAC=∠BAC,∠AFG=∠ABC90°

∴△AFG∽△ABC

y

CF的长为

故答案为

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,正六边形ABCDEF的边长为6cm,P是对角线BE上一动点,过点P作直线l与BE垂直,动点P从B点出发且以1cm/s的速度匀速平移至E点.设直线l扫过正六边形ABCDEF区域的面积为S(cm2),点P的运动时间为t(s),下列能反映S与t之间函数关系的大致图象是(  )

A. B. C. D.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知直线与抛物线 相交于和点两点.

⑴求抛物线的函数表达式;

⑵若点是位于直线上方抛物线上的一动点,以为相邻两边作平行四边形,当平行四边形的面积最大时,求此时四边形的面积及点的坐标;

⑶在抛物线的对称轴上是否存在定点,使抛物线上任意一点到点的距离等于到直线的距离,若存在,求出定点的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,点A1A2A3B1B2B3分别在直线x轴上.OA1 B1,△B1 A2 B2,△B2 A3 B3都是等腰直角三角形.如果点A1(11),那么点A2019的纵坐标是( )

A. B. C. D.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】为缓解某学校大班额现状,某市决定通过新建学校来解决该问题.经测算,建设6个小学,5个中学,需费用13800万元,建设10个小学,7个中学,需花费20600万元.

1)求建设一个小学,一个中学各需多少费用.

2)该市共计划建设中小学80所,其中小学的建设数量不超过中学建设数量的1.5倍.设建设小学的数量为x个,建设中小学校的总费用为y万元.

①求y关于x的函数关系式;

②如何安排中小学的建设数量,才能使建设总费用最低?

3)受国家开放二胎政策及外来务工子女就读的影响,预计在小学就读人数会有明显增加,现决定在(2)中所定的方案上增加投资以扩大小学的就读规模,若建设小学总费用不超过建设中学的总费用,则每所小学最多可增加多少费用?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】小王电子产品专柜以20/副的价格批发了某新款耳机,在试销的60天内整理出了销售数据如下

销售数据(x)

售价()

日销售量()

1x35

x+30

1002x

35x60

70

1002x

(1)若试销阶段每天的利润为W元,求出Wx的函数关系式;

(2)请问在试销阶段的哪一天销售利润W可以达到最大值?最大值为多少?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】温州某企业安排65名工人生产甲、乙两种产品,每人每天生产2件甲或1件乙,甲产品每件可获利15元.根据市场需求和生产经验,乙产品每天产量不少于5件,当每天生产5件时,每件可获利120元,每增加1件,当天平均每件获利减少2元.设每天安排x人生产乙产品.

(1)根据信息填表

产品种类

每天工人数(人)

每天产量(件)

每件产品可获利润(元)

15

(2)若每天生产甲产品可获得的利润比生产乙产品可获得的利润多550元,求每件乙产品可获得的利润.

(3)该企业在不增加工人的情况下,增加生产丙产品,要求每天甲、丙两种产品的产量相等.已知每人每天可生产1件丙(每人每天只能生产一件产品),丙产品每件可获利30元,求每天生产三种产品可获得的总利润W(元)的最大值及相应的x值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在一条笔直的公路上有两地,甲乙两人同时出发,甲骑自行车从地到地,乙骑自行车从地到地,到达地后立即按原路返回.如图是甲、乙两人离地的距离与行驶时间之间的函数图象,下列说法中①两地相距30千米;②甲的速度为15千米/时;③点的坐标为(20);④当甲、乙两人相距10千米时,他们的行驶时间是小时或小时. 正确的个数为( )

A.1B.2C.3D.4

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,AB为⊙O的直径,C为半圆上一动点,过点C作⊙O的切线l,过点BBDl,垂足为DBD与⊙O交于点E,连接OCCEAEAEOC于点F

1)求证:CDE≌△EFC

2)若AB4,连接AC

①当AC_____时,四边形OBEC为菱形;

②当AC_____时,四边形EDCF为正方形.

查看答案和解析>>

同步练习册答案