【题目】如图,AB是半圆O的直径,AC是半圆内一条弦,点D是的中点,DB交AC于点G,过点A作半圆的切线与BD的延长线交于点M,连接AD.点E是AB上的一动点,DE与AC相交于点F.
(1)求证:MD=GD;
(2)填空:①当∠DEA= 时,AF=FG;
②若∠ABD=30°,当∠DEA= 时,四边形DEBC是菱形.
【答案】(1)见解析;(2)①90°;②60°
【解析】
(1)由圆周角定理和切线的性质可得∠M+∠MAD=∠MAD+∠BAD=90°,再结合三角形外角的性质可得∠M=∠AGD,可证AG=AM,由等腰三角形三线合一可得结论;
(2)①由直角三角形的性质可得AF=FG=DF,由等腰三角形的性质和余角的性质可求∠DEA=90°;
②由菱形的性质可得∠DBA=∠DBC=30°,DE∥BC,即可求解.
证明:(1)如图,连接BC.
∵D是的中点,
∴∠DAC=∠ABD,
∵MA是半圆O的切线,
∴MA⊥AB,
∵AB是半圆O的直径,
∴AD⊥DB,
∴∠ADM=90°,
∴∠M+∠MAD=∠MAD+∠BAD=90°,
∴∠M=∠BAD=∠DAC+∠BAG=∠ABD+∠BAG=∠AGD,
∴AG=AM,
∵AD⊥MG,
∴MD=GD;
(2)①若AF=FG,
∵∠ADG=90°,
∴AF=FG=DF,
∴∠DAF=∠ADF,
∴∠ADF=∠ABD,
∵∠ADF+∠EDB=90°,
∴∠ABD+∠EDB=90°,
∴∠DEA=90°,
故答案为:90°;
②若四边形DEBC是菱形,
∴∠DBA=∠DBC=30°,DE∥BC,
∴∠AED=∠ABC=30°+30°=60°,
故答案为:60°.
科目:初中数学 来源: 题型:
【题目】某厂为了检验甲、乙两车间生产的同一款新产品的合格情况(尺寸范围为 的产品为合格),随机各抽取了 个样品进行检测,过程如下: 收集数据(单位:):
甲车间:
乙车间:
整理数据(表 1):
分析数据(表 2):
应用数据:
(1)直接写出表 2 中的 , ;
(2)估计甲车间生产的 个该款新产品中合格产品有多少个?
(3)结合上述数据信息,请判断哪个车间生产的新产品更好,并说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】折纸是一种许多人熟悉的活动.近些年,经过许多人的努力,已经找到了多种将正方形折纸的一边三等分的精确折法,下面探讨其中的一种折法:
(综合与实践)
操作一:如图1,将正方形纸片ABCD对折,使点A与点D重合,点B与点C重合,再将正方形纸片ABCD展开,得到折痕MN;
操作二:如图2,将正方形纸片ABCD的右上角沿MC折叠,得到点D的对应的点为D′;
操作三:如图3,将正方形纸片ABCD的左上角沿MD′折叠再展开,折痕MD′与边AB交于点P;
(问题解决)
请在图3中解决下列问题:
(1)求证:BP=D′P;
(2)AP:BP= ;
(拓展探究)
(3)在图3的基础上,将正方形纸片ABCD的左下角沿CD′折叠再展开,折痕CD′与边AB交于点Q.再将正方形纸片ABCD过点D′折叠,使点A落在AD边上,点B落在BC边上,然后再将正方形纸片ABCD展开,折痕EF与边AD交于点E,与边BC交于点F,如图4.试探究:点Q与点E分别是边AB,AD的几等分点?请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某水果店购进一批优质晚熟芒果,进价为10元/千克,售价不低于15元/千克,且不超过40元/千克,根据销售情况发现该芒果在一天内的销售量y(千克)与该天的售价x(元/千克)之间满足如表所示的一次函数关系:
(1)写出销售量y与售价x之间的函数关系式;
(2)设某天销售这种芒果获利W元,写出W与售价x之间的函数关系式,并求出当售价为多少元时,当天的获利最大,最大利润是多少?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在△ABC中,AB=AC,以AB为直径作半圆⊙O,交BC于点D,连接AD、过点D作DE⊥AC,垂足为点E,交AB的延长线于点F.
(1)求证:EF是⊙O的切线;
(2)求证:△FDB∽△FAD;
(3)如果⊙O的半径为5,sin∠ADE=,求BF的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图①,直线AB的解析式为y=﹣x+4,抛物线y=﹣+bx+c与y轴交于点A,与x轴交于点C(6,0),点P是抛物线上一动点,设点P的横坐标为m.
(1)求抛物线的解析式;
(2)当点P在第一象限内时,求△ABP面积的最大值,并求此时点P的坐标;
(3)如图②,当点P在y轴右侧时,过点A作直线l∥x轴,过点P作PH⊥l于点H,将△APH绕点A顺时针旋转,当点H的对应点H′恰好落在直线AB上时,点P的对应点P′恰好落在坐标轴上,请直接写出点P的横坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】Rt△OBC在直角坐标系内的位置如图所示,点C在y轴上,∠OCB=90°,反比例函数y=(k>0)在第一象限内的图象与OB边交于点D(m,3),与BC边交于点E(n,6).
(1)求m与n的数量关系;
(2)连接CD,若△BCD的面积为12,求反比例函数的解析式和直线OB的解析式;
(3)设点P是线段OB边上的点,在(2)的条件下,是否存在点P,使得以B、C、P为项点的三角形与△BDE相似?若存在,求出此时点P户的坐标;若不存在,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】疫情突发,危难时刻,从决定建造到交付使用,雷神山、火神山医院仅用时十天,其建造速度之快,充分展现了中国基建的巨大威力!这样的速度和动员能力就是全 国人民的坚定信心和尽快控制疫情的底气!改革开放年来,中国已经成为领先世界的基 建强国,如图①是建筑工地常见的塔吊,其主体部分的平面示意图如图②,点在线段上运动,垂足为点的延长线交于点 ,经测量,
(1)求线段的长度;(结果 精确到)
(2)连接,当线段时, 求点和点之间的距离.(结果 精确到,参考数据:)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,点D、O在△ABC的边AC上,以CD为直径的⊙O与边AB相切于点E,连结DE、OB,且DE∥OB.
(1)求证:BC是⊙O的切线.
(2)设OB与⊙O交于点F,连结EF,若AD=OD,DE=4,求弦EF的长.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com