精英家教网 > 初中数学 > 题目详情

【题目】如图,在平面直角坐标系中,Aa0),B0a),等腰直角三角形ODC的斜边经过点BOEAC,交ACE,若OE2,则△BOD与△AOE的面积之差为(  )

A.2B.3C.4D.5

【答案】A

【解析】

首先证明△DOB≌△COASAS),推出SDOBSAOE=SEOC,再证明△OEC是等腰直角三角形即可解决问题.

Aa0),B0a),∴OA=OB

∵△ODC是等腰直角三角形,∴OD=OC,∠D=DCO=45°.

∵∠DOC=BOA=90°,∴∠DOB=COA

在△DOB和△COA中,∵OD=OC,∠DOB=COAOB=OA,∴△DOB≌△COASAS),∴∠D=OCA=45°,SDOBSAOE=SEOC

OEAC,∴∠OEC=90°,∴△CEO是等腰直角三角形,∴OE=EC=2,∴SDOBSAOE=SEOC2×2=2

故选A

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】一个不透明的盒子里装有30个除颜色外其它均相同的球,其中红球有m个,白球有3m个,其它均为黄球.现小李从盒子里随机摸出一个球,若是红球,则小李获胜;小李把摸出的球放回盒子里摇匀,由小马随机摸出一个球,若为黄球,则小马获胜.

(1)当m=4时,求小李摸到红球的概率是多少?

(2)当m为何值时,游戏对双方是公平的?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,ABC中,∠ACB=90°AC=ANBC=BM,则∠MCN=( )

A. 30°B. 45°C. 60°D. 55°

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在△ABC中,ADBC边上的中线,EAB边上一点,过点CCFABED的延长线于点F

1)求证:△BDE≌△CDF

2)当ADBCAE2CF4时,求AC的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】下列图形是由大小、形状相同的“小等边三角形”按照一定的规律组成,其中第1幅图中有3个小等边三角形,第2幅图中有8个小边三角形,第3幅图中有15个小等边三角形,依此类推,则第10幅图中有(  )个小等边三角形.

A.63B.80C.99D.120

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,直线yx2与抛物线yax2bx6(a≠0)相交于点A( )B(4m),点P是线段AB上异于AB的动点,过点PPCx轴于点D,交抛物线于点C.

(1)求抛物线的解析式;

(2)是否存在这样的P点,使线段PC的长有最大值?若存在,求出这个最大值;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,是直角三角形,,以点为旋转中心,将旋转到的位置,且使经过点

的度数,判断的形状;

求线段与线段的数量关系.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,抛物线轴交于点,与轴交于两点(点轴正半轴上),为等腰直角三角形,且面积为,现将抛物线沿方向平移,平移后的抛物线过点时,与轴的另一点为,其顶点为,对称轴与轴的交点为

的值.

连接,试判断是否为等腰三角形,并说明理由.

现将一足够大的三角板的直角顶点放在射线或射线上,一直角边始终过点,另一直角边与轴相交于点,是否存在这样的点,使以点为顶点的三角形与全等?若存在,求出点的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图所示,扇形OMN的圆心角为45°,正方形A1B1C1A2的边长为2,顶点A1,A2在线段OM上,顶点B1在弧MN上,顶点C1在线段ON上,在边A2C1上取点B2,以A2B2为边长继续作正方形A2B2C2A3,使得点C2在线段ON上,点A3在线段OM上,……,依次规律,继续作正方形,则A2018M=__________

查看答案和解析>>

同步练习册答案