【题目】如图(1)所示为一个无盖的正方体纸盒,现将其展开成平面图,如图(2)所示.已知展开图中每个正方形的边长为1:
(1)在展开图(2)中可画出最长线段的长度为 ,在平面展开图(2)中这样的最长线段一共能画出 条。
(2)试比较立体图中∠ABC与平面展开图中∠A′B′C′的大小关系,并说明理由。
【答案】(1),4(2)∠A′B′C′=∠ABC,理由详见解析
【解析】
(1)最长线段应为最大的长方形对角线A′C′长度,根据勾股定理求出长度即可.最大长方形有两个,每一个的对角线有两条,共四条.
(2)连接B′C′,证明三角形全等,利用全等三角形对应角相等的性质,得到∠A′B′C′等于90 °.
(1)由图可知最长的线段应该为最大正方形的对角线,即A′C′的长度,根据勾股定理可得A′C′=.
展开图中这样的长方形有2个,每一个长方形有对角线2条,则图(2)中这样的最长线段一共能画出4条.
(2)
如图所示:
在直角三角形A′B′D与直角三角形C′B′E中,有
∴ (SAS)
∴∠A′B′D=∠B′C′E
又∠B′C′E+∠C′B′E=90°
∴∠A′B′D+∠C′B′E=90°
即∠A′B′C′=90°
而∠ABC=90°
∴∠A′B′C′=∠ABC
科目:初中数学 来源: 题型:
【题目】已知点A(1,a)在抛物线y=x2上.
(1)求A点的坐标;
(2)在x轴上是否存在点P,使得△OAP是等腰三角形?若存在,求出点P的坐标;若不存在,说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某高速铁路工程指挥部,要对某路段工程进行招标,接到了甲、乙两个工程队的投标书.从投标书中得知:甲队单独完成这项工程所需天数是乙队单独完成这项工程所需天数的:若由甲队先做20天,剩下的工程再由甲、乙两队合作60天完成.
(1)求甲、乙两队单独完成这项工程各需多少天?
(2)已知甲队每天的施工费用为8.6万元,乙队每天的施工费用为5.4万元,工程预算的施工费用为1000万元.若在甲、乙工程队工作效率不变的情况下使施工时间最短,问拟安排预算的施工费用是否够用?若不够用,需追加预算多少万元?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在⊙O中,弦AD、BC相交于点E,连接OE,已知AD=BC,AD⊥CB.
(1)求证:AB=CD; (2)如果⊙O的半径为5,DE=1,求AE的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图1是一个长为2m、宽为2n的长方形,沿图中虚线用剪刀均分成四块小长方形,然后按图2的形状拼成一个正方形。
(1)请用两种不同的方法求图2中阴影部分的面积(直接用含m,n的代数式表示).
方法1:;
方法2:.
(2)根据(1)中的结论,请你写出代数式(m+n)2,(m-n)2,mn之间的等量关系.
(3)根据(2)题中的等量关系,解决如下问题:已知实数a,b满足:a+b=5,ab=4,求a-b的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图①,直线AB与x轴正半轴交于A(a,0)与y轴正半轴交于B(0,b).
(1)若a+b=8,且,求△AOB的面积;
(2)若分式的值为0,过点B作BC平分∠OBA交x轴于C点,求证:;
(3)如图②,在(2)的条件下,过O点作OD⊥BC于D点,求的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,四边形ABCD中,AC平分∠DAB,∠ADC=∠ACB=90°,E为AB的中点,
(1)求证:AC2=ABAD;
(2)若AD=4,AB=6,求的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】学习了统计知识后,数学老师请数学兴趣小组的同学就本班同学的上学方式进行了一次调查统计.如图甲乙是数学兴趣小组的同学们通过手机和整理数据后,绘制的两幅不完整的统计图.
请你根据图中提供的信息,解答一下的问题:
(1)在扇形统计图中,计算出“步行”部分所应对的圆心角的度数.
(2)请问该班共有多少名学生?
(3)在图中将表示“乘车”的部分补充完整.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com