精英家教网 > 初中数学 > 题目详情
5.已知:如图,∠B=∠C,∠1=∠3.求证:∠A=∠D.
请把下面的推理过程填写完整.
证明:∵∠B=∠C(已知)
∴AB∥CD(内错角相等,两直线平行)
∴∠A=∠AFC(两直线平行,内错角相等)
   又∵∠1=∠3(已知)
∠2=∠3(对顶角相等)
∴∠1=∠2(等量代换)
∴AF∥DE(同位角相等,两直线平行)
∴∠AFC=∠D(两直线平行,同位角相等)
∴∠A=∠D(等量代换)

分析 根据平行线的判定得出AB∥CD,根据平行线的性质得出∠A=∠AFC,求出∠1=∠2,根据平行线的判定得出AF∥DE,根据平行线的性质得出∠AFC=∠D,即可得出答案.

解答 证明:∵∠B=∠C(已知)
∴AB∥CD(内错角相等,两直线平行)
∴∠A=∠AFC(两直线平行,内错角相等)
又∵∠1=∠3(已知),∠2=∠3(对顶角相等)
∴∠1=∠2(等量代换)
∴AF∥DE(同位角相等,两直线平行)
∴∠AFC=∠D(两直线平行,同位角相等)
∴∠A=∠D(等量代换).
故答案为:内错角相等,两直线平行,AFC,两直线平行,内错角相等,对顶角相等,AF,DE,AFC,两直线平行,同位角相等.

点评 本题考查了平行线的性质和判定的应用,能灵活运用定理进行推理是解此题的关键.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

15.已知$\sqrt{1-3a}$和|8b-3|互为相反数,求(ab)2的值.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

16.如图,∠A=∠1,∠1=∠2,试说明AC∥DE.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

13.(1)计算:2-1+$\sqrt{4}$-$\root{3}{8}$+($\sqrt{2}$)0
(2)求(x-3)2=16中x的值.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

20.保定市质检部门对该市某超市沐浴露的质量进行抽样调查,其中玉兰油品牌的沐浴露有400瓶、舒肤佳品牌的沐浴露有360瓶、力士牌的沐浴露有500瓶,考虑到不同品牌的质量差异,为保证样本有较好的代表性,该质检部门按5%的比例抽样,玉兰油品牌应调查20瓶,舒肤佳品牌应调查18瓶,力士品牌应调查25瓶.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

10.在△ABC中,BP,CP分别是∠ABC和∠ACB的平分线,BP和CP交于点P,若点P到△ABC的边AB的距离为3cm,△ABC的周长为18cm,则△ABC面积为27cm2

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

17.(a-b)2=(  )
A.a2-2ab-b2B.a2+2ab+b2C.a2-b2D.a2-2ab+b2

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

14.如图,在平行四边形ABCD中,点E在AD上,连接CE并延长与BA的延长线交于点F,若AE=2ED,S△CDE=3cm2,则△BCF的面积为(  )
A.6cm2B.9cm2C.18cm2D.27cm2

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

15.如图,在矩形ABCD中,AB=6,BC=8,点P从点B出发以每秒2个单位长度的速度向终点C运动,点P不与点B重合,以BP为边在BC上方作正方形BPEF,设正方形BPEF与△ABC的重叠部分图形的面积为S(平方单位),点P的运动时间为t(秒).
(1)用含t的代数式表示线段PC的长;
(2)当点E落在线段AC上时,求t的值;
(3)在点P运动的过程中,求S与t之间的函数关系式;
(4)设边BC的中点为O,点C关于点P的对称点为C′,以OC′为边在BC上方作正方形OC′MN,当正方形OC′MN与△ACD重叠部分图形为三角形时,直接写出t的取值范围.

查看答案和解析>>

同步练习册答案