【题目】已知二次函数.
()将化成的形式.
()与轴的交点坐标是__________,与轴的交点坐标是__________.
()在坐标系中利用描点法画出此抛物线.
()不等式的解集是__________.
【答案】()(). ; . , ()见解析()或.
【解析】试题分析:(1)利用配方法将一次项和二次项组合,再加上一次项系数的一半的平方来凑完全平方式,把一般式转化为顶点式.
(2)将已知方程转化为两点式方程即可得到该抛物线与x轴的交点坐标;令x=0即可得到该抛物线与y轴交点的纵坐标;
(3)将抛物线上的点的坐标列出,然后在平面直角坐标系中找出这些点,连接起来即可;
(4)结合图象可以直接得到答案.
试题解析:
()
(2)令x=0,则y=3,即该抛物线与y轴的交点坐标是(0,3),
又
所以该抛物线与x轴的交点坐标是(3,0)(1,0).
故答案是:(0,3);(3,0)(1,0);
()
(4)如图所示,不等式的解集是x<1或x>3.
故答案是:x<1或x>3.
科目:初中数学 来源: 题型:
【题目】如图,已知函数 y=x+1 的图象与 y 轴交于点 A,一次函数 y=kx+b 的图象经过点 B(0,﹣1),与x 轴 以及 y=x+1 的图象分别交于点 C、D,且点 D 的坐标为(1,n),
(1)则n= ,k= ,b= ;
(2)函数 y=kx+b 的函数值大于函数 y=x+1 的函数值,则X的取值范围是 ;
(3)求四边形 AOCD 的面积;
(4)在 x轴上是否存在点 P,使得以点 P,C,D 为顶点的三角形是直角三角形?若存在求出点 P 的坐标; 若不存在,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图是10×8的正方形网格,每个小正方形的顶点称为格点,每个小正方形的边长都是1个单位,线段的端点均在格点上,且点的坐标为,按下列要求用没有刻度的直尺画出图形.
(1)请在图中找到原点的位置,并建立平面直角坐标系;
(2)将线段平移到的位置,使与重合,画出线段,然后作线段关于直线对称线段,使的对应点为,画出线段;
(3)在图中找到一个各点使,画出并写出点的坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,点,点.
(1)①画出线段关于轴对称的线段;
②在轴上找一点使的值最小(保留作图痕迹);
(2)按下列步骤,用不带刻度的直尺在线段找一点使.
①在图中取点,使得,且,则点的坐标为___________;
②连接交于点,则点即为所求.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,是等边三角形,为上两点,且,延长至点,使,连接.
(1)如图1,当两点重合时,求证:;
(2)延长与交于点.
①如图2,求证:;
②如图3,连接,若,则的面积为______________.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com