精英家教网 > 初中数学 > 题目详情

【题目】某同学要证明命题“平行四边形的对边相等.”是正确的,他画出了图形,并写出了如下已知和不完整的求证.
已知:如图,四边形ABCD是平行四边形.

求证:AB=CD,
(1)补全求证部分;
(2)请你写出证明过程.

【答案】
(1)

BC=DA


(2)

证明:连接AC,如图所示:

∵四边形ABCD是平行四边形,

∴AB∥CD,AD∥BC,

∴∠BAC=∠DCA,∠BCA=∠DAC,

在△ABC和△CDA中,

∴△ABC≌△CDA(ASA),

∴AB=CD,BC=DA;

故答案为:

∵四边形ABCD是平行四边形,

∴AB∥CD,AD∥BC,

∴∠BAC=∠DCA,∠BCA=∠DAC,

在△ABC和△CDA中,

∴△ABC≌△CDA(ASA),

∴AB=CD,BC=DA.


【解析】(1)已知:如图,四边形ABCD是平行四边形.
求证:AB=CD,BC=DA;
故答案为:BC=DA;
本题考查了平行四边形的性质、全等三角形的判定与性质;熟练掌握平行四边形对边平行的性质,证明三角形全等是解决问题的关键.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,从一张腰长为60cm,顶角为120°的等腰三角形铁皮OAB中剪出一个最大的扇形OCD,用此剪下的扇形铁皮围成一个圆锥的侧面(不计损耗),则该圆锥的高为(  )

A.10cm
B.15cm
C.10 cm
D.20 cm

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某开发商进行商铺促销,广告上写着如下条款:

购买商铺后,都由开发商代为租赁10年,10年期满后再由开发商以比原商铺标价高20%的价格进行回购,投资者可在以下两种购铺方案中做出选择:

方案一投资者按商铺标价一次性付清铺款,每年可以获得的租金为商铺标价的5%.

方案二:投资者按商铺标价的八五折一次性付清铺款,4年后每年可以获得的租金为商铺标价的5%,但要缴纳租金的10%作为管理费用.

(1)请问:投资者选择哪种购铺方案,10年后所获得的投资收益率更高?为什么?(注:投资收益率=×100%)

(2)(列方程求解)某投资者按方案一购买商铺,因资金周转,决定向银行贷铺款的20%并于一年后付清贷款,已知贷款年利率为5%.那么10年后该投资者获得55.2万元的收益,问铺款是多少元?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】筐白菜以每筐千克为标准超过的千克数记作正数不足的千克数记作负数称后的记录如下:

回答下列问题:

(1)这筐白菜中最接近千克的那筐白菜为  千克;

(2)若白菜每千克售价则出售这8筐白菜可卖多少元?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,将△ABO绕点B顺时针旋转到△A1BO1的位置,使点A的对应点A1落在直线y= x上,再将△A1BO1绕点A1顺时针旋转到△A1B1O2的位置,使点O1的对应点O2落在直线y= x上,依次进行下去…,若点A的坐标是(0,1),点B的坐标是( ,1),则点A8的横坐标是

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,ABP是两个全等的等边三角形,且,有下列四个结论:①④四边形ABCD是轴对称图形,其中正确的有

A. 1 B. 2 C. 3 D. 4

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在等腰直角三角形ABC中,∠C=90 o,AC=BC=4,点D是AB的中点,E.F在射线AC与射线CB上运动,且满足AE=CF;当点E运动到与点C的距离为1时,则△DEF的面积为___________.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知四边形ABCD是平行四边形,下列结论中不正确的是(  )

A. ABBC时,它是菱形 B. ACBD时,它是菱形

C. 当∠ABC90°时,它是矩形 D. ACBD时,它是正方形

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知:△ABC在直角坐标平面内,三个顶点的坐标分别为A(﹣1,2)、B(﹣2,1)、C(1,1)(正方形网格中每个小正方形的边长是1个单位长度).

(1)△A1B1C1是△ABC绕点逆时针旋转度得到的,B1的坐标是
(2)求出线段AC旋转过程中所扫过的面积(结果保留π).

查看答案和解析>>

同步练习册答案