精英家教网 > 初中数学 > 题目详情
9.如图,点E是正方形ABCD的边DC上一点,把△ADE顺时针旋转至△ABF的位置.
(1)旋转中心是点A,旋转角度是90度;
(2)若连结EF,则△AEF是等腰直角三角形;并证明;
(3)若四边形AECF的面积为36,DE=2,求EF的长.

分析 (1)根据题意,即可确定旋转中心,旋转角.
(2)结论:△AEF是等腰直三角形.:由△ABF≌△ADE,推出AF=AE,∠FAB=∠DAE,推出∠FAE=∠DAB=90°即可证明.
(3)理由(2)的结论EF=$\sqrt{2}$AE,求出AE即可解决问题.

解答 解:(1)由题意旋转中心为点A,旋转角为90°;  
故答案为A,90.

(2)结论:△AEF是等腰直三角形.
理由:∵△ABF≌△ADE,
∴AF=AE,∠FAB=∠DAE,
∴∠FAE=∠DAB=90°.
∴△AEF是等腰直角三角形,
故答案为等腰直角.

(3)∵正方形ABCD的面积为36,
∴AD=BC=CD=AB=6,
在Rt△ADE中,∵AD=6,DE=2,
∴AE=AF=$\sqrt{{6}^{2}+{2}^{2}}$=2$\sqrt{10}$,
∵△AEF是等腰直角三角形,
∴EF=$\sqrt{2}$AE=4$\sqrt{5}$.

点评 本题考查旋转的性质、正方形的性质、等腰直角三角形的性质、勾股定理等知识,解题的关键是利用旋转不变性解决问题,属于中考常考题型.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

19.已知方程6x-9=10x-45与方程3a-1=3(x+a)-2a的解相同
(1)求这个相同的解;
(2)求a的值.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

20.已知有理数a、b、c在数轴上的位置如图所示,化简|a+c|-|b-c|.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

17.在⊙O中,直径AB⊥CD于点E,连接CO并延长交AD于点F,且CF⊥AD.
(1)求∠D的度数.
(2)若OE=1cm,求劣弧BD的长.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

4.如图,点P、Q分别是等边△ABC边AB、BC上的动点(端点除外),点P从顶点A、点Q从顶点B同时出发,且它们的运动速度相同,连接AQ、CP交于点M.

(1)求证:△ABQ≌△CAP;
(2)当点P、Q分别在AB、BC边上运动时,∠QMC的大小变化吗?若变化,说明理由;若不变,请直接写出它的度数.
(3)如图2,若点P、Q在运动到终点后继续在射线AB、BC上运动,直线AQ、CP交点为M,则∠QMC变化吗?若变化,请说明理由;若不变,求出它的度数.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

14.如图,在平面直角坐标系中,直线AB与y轴交于点A,与x轴交于点B,且∠BAO=30°,现将△OAB沿直线AB翻折,得到△CAB.连接OC交AB于点D.
(1)求证:AD⊥OC,OD=$\frac{1}{2}$OA;
(2)若Rt△AOB的斜边AB=4$\sqrt{3}$,则OB=2$\sqrt{3}$;OA=6;点C的坐标为($3\sqrt{3}$,3);
(3)在(2)的条件下,动点F从点O出发,以2个单位长度/秒的速度沿折线O-A-C向终点C运动,设△FOB的面积为S(S>0),点F的运动时间为t秒,求S与t的关系式,并直接写出t的取值范围;
(4)在(3)的条件下,过点B作BE⊥x轴,交AC于点E,在动点F的运动过程中,当t为何值时,△BEF是以BE为腰的等腰三角形?

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

1.已知方程4x+2m=3x+1和方程3x+2m=6x+1的解相同,求:
(1)m的值;
(2)代数式(m+2)(2m-$\frac{7}{5}$)的值.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

18.如图所示,二次函数y=-x2+2x+3的图象与x轴的一个交点为A(3,0),另一个交点为B,且与y轴交于点C.
(1)B点坐标(-1,0),C点坐标(0,3),
(2)根据图象,写出函数值y为正数时,自变量x的取值范围是-1<x<3.
(3)在第一象限内该二次函数图象上有一点D(x,y),使S△ABD=S△ABC,求点D的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

19.当x满足x≠4时,(x-4)0=1.

查看答案和解析>>

同步练习册答案