【题目】如图,在平面直角坐标系中,点A在抛物线y=- x2 + 4x上,且横坐标为1,点B与点A关于抛物线的对称轴对称,直线AB与y轴交于点C,点D为抛物线的顶点,点E的坐标为(1,1).
(1)求线段AB的长.
(2)点P为线段AB.上方抛物线上的任意一点,过点P作AB的垂线交AB于点H,点F为y轴上一点,当PBE的面积最大时,求PH + HF + FO的最小值.
(3)在(2)中,PH+HF+方FO取得最小值时,将CFH绕点C顺时针旋转60°后得到CF'H',过点F'作CF'的垂线与直线AB交于点Q,点R为抛物线对称轴上的一点,在平面直角坐标系中是否存在点S,使以点D,Q,R,S为顶点的四边形为菱形,若存在,请直接写出点S的坐标,若不存在,请说明理由.
【答案】(1) AB=2;(2) ;(3) (-1,3-)或( -1,3 + )或( -1,8)或(5,3).
【解析】
(1)求出A、B两点坐标,即可解决问题;
(2)如图1中,设P(m,-m2+4m),作PN∥y轴交BE于N.构建二次函数利用二次函数的性质求出满足条件的点P坐标,作直线OG交AB于G,使得∠COG=30°,作HK⊥OG于K交OC于F,因为FK=OF,推出PH+HF+FO=PH+FH+Fk=PH+HK,此时PH+HF+OF的值最小,解直角三角形即可解决问题;
(3)分两种情形分别求解即可.
解:(1)由题意A(1,3),B(3,3),
∴AB=2;
(2)如图1中,
设P(m,-m2+4m),作PN∥y轴交BE于N.
∵直线BE的解析式为y=x,
∴N(m,m),
∴S△PEB=×2×(-m2+3m)=-m2+3m,
∴当m=时,△PEB的面积最大,此时P(,),H(,3),
∴PH=-3=,
作直线OG交AB于G,使得∠COG=30°,作HK⊥OG于K交OC于F,
∵FK=OF,
∴PH+HF+FO=PH+FH+FK=PH+HK,此时PH+HF+OF的值最小,
∵HGOC=OGHK,
∴HK= ,
∴PH+HF+OF的最小值为.
(3)如图2中,由题意CH=,CF=,QF′=,CQ=1,
∴Q(-1,3),D(2,4),DQ=,
①当DQ为菱形的边时,S1(-1,3-),S2(-1,3+),S4(5,3)
②当DQ为对角线时,可得S3(-1,8),
综上所述,满足条件的点S坐标为(-1,3-)或(-1,3+)或(-1,8)或(5,3).
科目:初中数学 来源: 题型:
【题目】“互联网+”时代,网上购物备受消费者青睐.某网店专售一款休闲裤,其成本为每条40元,当售价为每条80元时,每月可销售100条.为了吸引更多顾客,该网店采取降价措施.据市场调查反映:销售单价每降1元,则每月可多销售5条.设每条裤子的售价为元(为正整数),每月的销售量为条.
(1)直接写出与的函数关系式;
(2)设该网店每月获得的利润为元,当销售单价降低多少元时,每月获得的利润最大,最大利润是多少?
(3)该网店店主热心公益事业,决定每月从利润中捐出200元资助贫困学生.为了保证捐款后每月利润不低于4220元,且让消费者得到最大的实惠,该如何确定休闲裤的销售单价?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,平面直角坐标系中,点,函数()的图象经过平行四边形的顶点和边的中点.
(1)求的值;
(2)若的面积等于6.求的值;
(3)若为函数()的图象上一个动点,过点作直线轴于点,直线与轴上方的平行四边形的一边交于点,设点的横坐标为,当时,求的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,二次函数的图象与x轴交于A、B两点,B点的坐标为(3,0),与y轴交于点C(0,-3),点P是直线BC下方抛物线上的一个动点.
(1)求二次函数解析式;
(2)连接PO,PC,并将△POC沿y轴对折,得到四边形.是否存在点P,使四边形为菱形?若存在,求出此时点P的坐标;若不存在,请说明理由;
(3)当点P运动到什么位置时,四边形ABPC的面积最大?求出此时P点的坐标和四边形ABPC的最大面积.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,二次函数y= ax2 + bx +c经过点A(-1,0), B(3,0), C(0,-3).
(1)求该二次函数的解析式.
(2)利用图象的特点填空.
①当x= ___ 时方程ax2 + bx+c=-3.
当x= ___时方程ax2 +bx+c=-4.
②不等式ax2 + bx + c> 0的解集为
不等式-4<ax2+bx+c<0的解集为.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】我市茶叶专卖店销售某品牌茶叶,其进价为每千克 240 元,按每千克 400 元出售,平均每周可售出 200 千克,后来经过市场调查发现,单价每降低 10 元,则平均每周的销售量可增加 40 千克,若该专卖店销售这种品牌茶叶要想平均每周获利 41600 元,请回答:
(1)每千克茶叶应降价多少元?
(2)在平均每周获利不变的情况下,为尽可能让利于顾客,赢得市场,该店应按原售价的 几折出售?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知△ABC的一条边BC的长为5,另两边AB,AC的长分别为关于x的一元二次方程的两个实数根。
(1)求证:无论k为何值,方程总有两个不相等的实数根;
(2)当k=2时,请判断△ABC的形状并说明理由;
(3)k为何值时,△ABC是等腰三角形,并求△ABC的周长。
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com