【题目】如图,已知AB、AC是⊙O的两条弦,且AO平分∠BAC.点M、N分别在弦AB、AC上,满足AM=CN.
(1)求证:AB=AC;
(2)联结OM、ON、MN,求证:.
【答案】(1)见解析;(2)见解析.
【解析】
(1)过点O作OD⊥AB于点D,OE⊥AC于点E,利用角平分线的性质和垂径定理即可得出答案;
(2)联结OB,OM,ON,MN,首先证明,然后再证明,根据相似三角形的性质即可得出答案.
证明:(1)过点O作OD⊥AB于点D,OE⊥AC于点E,如图所示:
∵AO平分∠BAC.
∴OD=OE.
,
.
,
,
∴AB=AC;
(2)联结OB,OM,ON,MN,如图所示,
∵AM=CN,AB=AC
∴BM=AN.
∵OA=OB,
∴∠B=∠BAO.
∵∠BAO=∠OAN,
∴∠B=∠OAN,
∴△BOM≌△AON(SAS),
∴∠BOM=∠AON,OM=ON,
∴∠AOB=∠MON,
∴△NOM∽△BOA,
∴.
科目:初中数学 来源: 题型:
【题目】某初中为了提高学生综合素质,决定开设以下校本课程:.软笔书法,.经典诵读,.钢笔画,.花样跳绳,为了了解学生最喜欢哪一项校本课程,随机抽取了部分学生进行了调查,并将调查结果绘制成了两幅不完整的统计图,请回答下列问题:
(1)这次被调查的学生共_____人;
(2)请将条形统计补充完整;
(3)在平时的花样跳绳的课堂学习中,甲、乙、丙三人表现优秀,现决定从这三名同学中任选两名参加全区综合素质展示,求恰好同时选中甲、乙两位同学的概率.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】一副三角尺按如图的位置摆放(顶点C 与F 重合,边CA与边FE叠合,顶点B、C、D在一条直线上).将三角尺ABC绕着点C按逆时针方向旋转n°后(0<n<360 ),若ED⊥AB,则n的值是_______.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,△ABC中,∠ABC=45°,CD⊥AB于D,BE平分∠ABC,且BE⊥AC于E,与CD相交于点F,DH⊥BC于H交BE于G.下列结论:①BD=CD;②AD+CF=BD;③CE=BF;④AE=BG.其中正确的个数是( )
A. 1个B. 2个C. 3个D. 4个
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在平面直角坐标系xOy中(如图),已知经过点A(﹣3,0)的抛物线y=ax2+2ax﹣3与y轴交于点C,点B与点A关于该抛物线的对称轴对称,D为该抛物线的顶点.
(1)直接写出该抛物线的对称轴以及点B的坐标、点C的坐标、点D的坐标;
(2)联结AD、DC、CB,求四边形ABCD的面积;
(3)联结AC.如果点E在该抛物线上,过点E作x轴的垂线,垂足为H,线段EH交线段AC于点F.当EF=2FH时,求点E的坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,一次函数y1=mx+n与反比例函数y2= (x>0)的图象分别交于点A(a,4)和点B(8,1),与坐标轴分别交于点C和点D.
(1)求一次函数与反比例函数的解析式;
(2)观察图象,当x>0时,直接写出y1>y2的解集;
(3)若点P是x轴上一动点,当△COD与△ADP相似时,求点P的坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知抛物线经过点A(-1,0),B(3,0)两点,与y轴交点于C(0,-3).
(1)确定该抛物线的解析式,并求出顶点D的坐标;
(2)在抛物线的对称轴上找一点M使得∠AMC=90°,请求出满足条件的所有的点M的坐标;
(3)抛物线上是否存在一点P,使得∠APB=∠ACO ?若存在,请求出P点的横坐标,若不存在,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知二次函数y=ax2+bx+c的图象经过A(n,b),B(m,a)且m+n=1.
(1)当b=a时,直接写出函数图象的对称轴;
(2)求b和c(用只含字母a、n的代数式表示):
(3)当a<0时,函数有最大值-1,b+c≥a,n≤,求a的取值范围.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】E-learning即为在线学习,是一种新型的学习方式.某网站提供了A、B两种在线学习的收费方式.A种:在线学习10小时(包括10小时)以内,收取费用5元,超过10小时时,在收取5元的基础上,超过部分每小时收费0.6元(不足1小时按1小时计);B种:每月的收费金额(元)与在线学习时间是(时)之间的函数关系如图所示.
(1)按照B种方式收费,当时,求关于的函数关系式.
(2)如果小明三月份在这个网站在线学习,他按照A种方式支付了20元,那么在线学习的时间最多是多少小时?如果该月他按照B 种方式付费,那么他需要多付多少元?
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com