【题目】综合与实践
问题情境:
小明将两个全等的和重叠在一起,其中,,. 固定△DEF不动,将△ABC沿直线ED向左平移,当B与D重合时停止移动.
猜想证明:
(1)如图1,在平移过程中,当点D为AB中点时,连接DC,CF,BF,请你猜想四边形CDBF的形状,并证明你的结论;
(2)如图2,在平移过程中,连接DC,CF,FB,四边形CDBF的形状在不断地变化,判断它的面积变化情况,并求出其面积;
探索发现:
(3)在平移过程中,四边形CDBF有什么共同特征?(写出两个即可)________,________;
(4)请你提出一个与△ABC平移过程有关的新的数学问题(不必证明和解答).
【答案】(1)菱形,证明见解析;(2)四边形CDBF的面积是定值;(3)①四边形CDBF的对角线互相垂直;②四边形CDBF一组对边平行;③四边形CDBF面积是一个定值.(写出两个即可,答案不唯一)(4)答案不唯一,只要符合要求即可得.如:平移过程中,求与的和.
【解析】
(1)根据平移性质证明四边形CDBF是平行四边形,再证明,问题得证;
(2)过点C作于点G,求出CG,AB,根据梯形面积公式和平移性质节课求出四边形CDBF的面积;
(3)结合第(2)步已经平移的性质即可写出结论;
(4)根据所学知识提出一个问题即可.
(1)菱形
证明:由平移得,,
又∵点D为AB的中点,∴,∴,
又∵,∴,∴四边形CDBF是平行四边形.
在中,CD为中线,∴,∴四边形CDBF是菱形.
(2)四边形CDBF的面积是定值.
如答图2,过点C作于点G,
在中,∵,∴.
∵,∴.
(3)①四边形CDBF的对角线互相垂直;
②四边形CDBF一组对边平行;
③四边形CDBF面积是一个定值.
(写出两个即可,答案不唯一)
(4)答案不唯一,只要符合要求即可.如:平移过程中,求与的和.
科目:初中数学 来源: 题型:
【题目】如图1,在平面直角坐标系中,直线y=x+4与抛物线y=﹣x2+bx+c(b,c是常数)交于A、B两点,点A在x轴上,点B在y轴上.设抛物线与x轴的另一个交点为点C.
(1)求该抛物线的解析式;
(2)P是抛物线上一动点(不与点A、B重合),
①如图2,若点P在直线AB上方,连接OP交AB于点D,求的最大值;
②如图3,若点P在x轴的上方,连接PC,以PC为边作正方形CPEF,随着点P的运动,正方形的大小、位置也随之改变.当顶点E或F恰好落在y轴上,直接写出对应的点P的坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】经销商购进某种商品,当购进量在20千克~50千克之间(含20千克和50千克)时,每千克进价是5元;当购进量超过50千克时,每千克进价是4元.此种商品的日销售量y(千克)受销售价x(元/千克)的影响较大,该经销商试销一周后获得如下数据:
x(元/千克) | 5 | 5.5 | 6 | 6.5 | 7 |
y(千克) | 90 | 75 | 60 | 45 | 30 |
解答下列问题:
(1)求出y关于x的一次函数表达式:
(2)若每天购进的商品能够全部销售完,且当日销售价不变,日销售利润为w元,那么销售价定为多少时,该经销商销售此种商品的当日利润最大?最大利润为多少元?此时购进量应为多少千克?(注:当日利润=(销售价-进货价)×日销售量).
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知△ABC在平面直角坐标系内,三个顶点的坐标分别为A(0,3),B(4,5),C(3,2).(正方形网格中,每个小正方形的边长都是1个单位长度)
(1)画出△ABC向下平移5个单位长度得到的,并直接写出点的坐标;
(2)以点B为位似中心,在网格中画出,使与位似,且相似比为2∶1,并直接写出的面积.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,四边形OABC是矩形,四边形ADEF是正方形,点A、D在x轴的负半轴上,点C在y轴的正半轴上,点F在AB上,点B、E在反比例函数y=(k为常数,k≠0)的图象上,正方形ADEF的面积为4,且BF=2AF,则k值为_____.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知等腰三角形ABC的底角为30°,以BC为直径的⊙O与底边AB交于点D,过D作DE⊥AC,垂足为E.
(1)证明:DE为⊙O的切线;
(2)连接OE,若BC=4,求△OEC的面积.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在正方形ABCD中,E、F分别是AB、CD的中点,EG⊥AF,FH⊥CE,垂足分别为G,H,设AG=x,图中阴影部分面积为y,则y与x之间的函数关系式是( )
A. y=3x2 B. y=4x2 C. y=8x2 D. y=9x2
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,抛物线与轴交于两点,与轴交于点,点的坐标是,为抛物线上的一个动点,过点作轴于点,交直线于点,抛物线的对称轴是直线.
(1)求抛物线的函数表达式和直线的解析式;
(2)若点在第二象限内,且,求的面积;
(3)在(2)的条件下,若为直线上一点,是否存在点,使为等腰三角形?若存在,直接写出点的坐标;若不存在,请说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com