精英家教网 > 初中数学 > 题目详情
3.计算::
(1)(xy-x2)÷$\frac{x-y}{xy}$             
(2)($\frac{{a}^{2}b}{-c}$)2•($\frac{{c}^{2}}{-ab}$)3÷($\frac{bc}{a}$)4
(3)$\frac{a-1}{{a}^{2}-4a+4}$÷$\frac{{a}^{2}-1}{{a}^{2}-4}$                  
(4)$\frac{2-x}{x-1}$÷(x+1-$\frac{3}{x-1}$).

分析 (1)先因式分解,再利用分式的混合运算顺序求解,
(2)利用分式的混合运算顺序求解即可,
(3)先因式分解,再利用分式的混合运算顺序求解,
(4)利用分式的混合运算顺序求解即可.

解答 解:(1)(xy-x2)÷$\frac{x-y}{xy}$   
=-x(x-y)×$\frac{xy}{x-y}$,
=-x2y,
(2)($\frac{{a}^{2}b}{-c}$)2•($\frac{{c}^{2}}{-ab}$)3÷($\frac{bc}{a}$)4
=$\frac{{a}^{4}{b}^{2}}{{c}^{2}}$•$\frac{{c}^{6}}{-{a}^{3}{b}^{3}}$•$\frac{{a}^{4}}{{b}^{4}{c}^{4}}$,
=-a5b5
(3)$\frac{a-1}{{a}^{2}-4a+4}$÷$\frac{{a}^{2}-1}{{a}^{2}-4}$  
=$\frac{a-1}{(a-2)^{2}}$•$\frac{(a+2)(a-2)}{(a+1)(a-1)}$,
=$\frac{a+2}{{a}^{2}-a-2}$,
(4)$\frac{2-x}{x-1}$÷(x+1-$\frac{3}{x-1}$)
=$\frac{2-x}{x-1}$÷$\frac{(x+2)(x-2)}{x-1}$,
=$\frac{2-x}{x-1}$•$\frac{x-1}{(x+2)(x-2)}$,
=-x-2.

点评 本题主要考查了分式的混合运算,解题的关键是能正确的因式分解.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:选择题

13.如图,在△ABC中,∠C=90°,AC=2,BC=4.△A1B1C1、△A2B2C2、△A3B3C3、…、△AnBnCn是n个相同的等腰直角三角形,其直角顶点C1、C2、C3、…、Cn都在CB边上,点A1在AC上,A2C2经过点B1且平行于A1C1,A3C3经过点B2且平行于A2C2,…,AnCn过点Bn-1且平行于An-1Cn-1,且A1C=2CC1.当n=7时,点B7正好落在AB边,则这个小的等腰直角三角形的直角边长为(  )
A.$\frac{1}{7}$B.$\frac{\sqrt{5}}{7}$C.$\frac{\sqrt{5}}{5}$D.$\frac{8\sqrt{5}}{5}$

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

14.已知-4xay与x2yb是同类项,则a+b的值为(  )
A.1B.2C.3D.4

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

11.若$\left\{\begin{array}{l}x+2y=6\\ 2x+y=9\end{array}\right.$,则5(x+y)=25.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

18.已知a为任意整数,且(a+13)2-a2的值总可以被n(n为自然数,且n≠1)整除,则n的值为(  )
A.13B.26C.13或26D.13的倍数

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

8.如图,某中学准备在校园里利用围墙的一段,再砌三面墙,围成一个矩形花园ABCD(围墙MN最长可利用25m),现在欲砌50m长的墙,砌成一个面积300m2的矩形花园,则BC的长为20 m.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

15.已知:如图BC∥EF,BC=EF,AB=DE;说明AC与DF相等.
证明:∵BC∥EF(已知)
∴∠ABC=∠DEF
在△ABC和△DEF中

∴△ABC≌△DEF
∴AC=DF.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

12.(1)0-11                    
(2)(-13)+(-8)
(3)(-2)-(-9)
(4)(-4$\frac{1}{2}$)-5$\frac{3}{4}$
(5)23+(-17)+6+(-22)
(6)(-$\frac{4}{13}$)+(-$\frac{4}{17}$)+$\frac{4}{13}$+(-$\frac{13}{17}$)
(7)0-(-6)+2-(-13)-(+8)
(8)-4.2+5.7-8.4+10.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

13.如图,四边形ABCD是平行四边形,作AF∥CE,BE∥DF.
求证:BE=DF.

查看答案和解析>>

同步练习册答案