【题目】如图,是⊙的直径,弦,垂足为,,连结,为的中点,连结,过点作直线,交的延长线于点.
(1)求证:是⊙的切线;
(2)若,求⊙的半径
【答案】(1)见解析;(2)2
【解析】
(1)连接OE,OF,利用垂径定理及等腰三角形的性质得到∠DOF=∠DOE.而∠DOE=2∠A,所以,由 得到,
于是可求出,所以为⊙的切线;
(2)连接OM,如图,利用圆周角定理得到∠AEB=90°.再证明OM∥AE得到∠MOB=∠A=30°.而∠DOF=2∠A=60°,所以∠MOF=90°,设⊙O的半径为r,利用含30度的直角三角形三边的关系得OM,然后根据勾股定理列出方程求解即可.
解:(1)如图,连结,,
∵,是⊙的直径
∴,
∵,,
∴
∵,
∴,
∴
∴为⊙的切线
(2)连接,
∵为⊙的直径,
∴为中点,,
∵为的中点,
∴,
设⊙的半径为.
∵,
∴,
∴.
∵,,
∴
∵
∴
∴,
∵,
∴.
解得.(舍去负根)
∴⊙的半径为2.
科目:初中数学 来源: 题型:
【题目】为进一步提高全民“节约用水”意识,某学校组织学生进行家庭月用水量情况调查活动,李明随机抽查了所住小区x户家庭的月用水量,绘制了下面不完整的统计图:
(1)求x并补全条形统计图;
(2)求这x户家庭的月平均用水量;并估计李明所住小区620户家庭中月用水量低于月平均用水量的家庭户数;
(3)从月用水量为5m3和9m3的家庭中任选两户进行用水情况问卷调查,求选出的两户中月用水量为5m3和9m3恰好各有一户家庭的概率;
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知⊙O的半径是5,AB是⊙O的弦,直径CD⊥AB于点E.
(1)点F是⊙O上任意一点,请仅用无刻度的直尺画出∠AFB的角平分线;
(2)若AC=8,试求AB的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】对于一个函数,当自变量x取n时,函数值y等于4-n,我们称n为这个函数的“二合点”,如果二次函数y=mx2+x+1有两个相异的二合点x1,x2,且x1<x2<1,则m的取值范围是______.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知抛物线C:y1=ax2-ah(2x-h)-2,直线l:y2=k(x-h)-2.
(1)求证:直线l恒过抛物线C的顶点;
(2)当a=-1,m≤x≤2时,y1≥x-4恒成立,求m的最小值;
(3)当0<a≤3,k>0时,若在直线l下方的抛物线C上至少存在两个横坐标为整数的点,求k的取值范围.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知:和均为等腰直角三角形,,,,连接.
(1)如图1所示,线段与的数量关系是_____,位置关系是_____;
(2)在图1中,若点M、P、N分别为的中点,连接,请判断的形状,并说明理由;
(3)如图2所示,若M、N、P分别为上的点,且满足,,连接,则线段长度是多少?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知抛物线经过点和点,与轴交于点.
(1)求此抛物线的解析式;
(2)若点是直线下方的抛物线上一动点(不点,重合),过点作轴的平行线交直线于点,设点的横坐标为.
①用含的代数式表示线段的长;
②连接,,求的面积最大时点的坐标;
(3)设抛物线的对称轴与交于点,点是抛物线的对称轴上一点,为轴上一点,是否存在这样的点和点,使得以点、、、为顶点的四边形是菱形?如果存在,请直接写出点的坐标;如果不存在,请说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com