精英家教网 > 初中数学 > 题目详情

【题目】为迎接“世界华人炎帝故里寻根节”,某工厂接到一批纪念品生产订单,按要求在15天内完成,约定这批纪念品的出厂价为每件20元,设第x天(1≤x≤15,且x为整数)每件产品的成本是p元,p与x之间符合一次函数关系,部分数据如表:

天数(x)

1

3

6

10

每件成本p(元)

7.5

8.5

10

12

任务完成后,统计发现工人李师傅第x天生产的产品件数y(件)与x(天)满足如下关系:y=

设李师傅第x天创造的产品利润为W元.

(1)直接写出p与x,W与x之间的函数关系式,并注明自变量x的取值范围:

(2)求李师傅第几天创造的利润最大?最大利润是多少元?

(3)任务完成后.统计发现平均每个工人每天创造的利润为299元.工厂制定如下奖励制度:如果一个工人某天创造的利润超过该平均值,则该工人当天可获得20元奖金.请计算李师傅共可获得多少元奖金?

【答案】(1)W=;(2)李师傅第8天创造的利润最大,最大利润是324元;(3)李师傅共可获得160元奖金.

【解析】1)根据题意和表格中的数据可以求得px,Wx之间的函数关系式,并注明自变量x的取值范围:

(2)根据题意和题目中的函数表达式可以解答本题;

(3)根据(2)中的结果和不等式的性质可以解答本题.

(1)设px之间的函数关系式为p=kx+b,则有

,解得,

px的函数关系式为p=0.5x+7(1≤x≤15,x为整数),

1≤x<10时,

W=[20﹣(0.5x+7)](2x+20)=﹣x2+16x+260,

10≤x≤15时,

W=[20﹣(0.5x+7)]×40=﹣20x+520,

W=

(2)当1≤x<10时,

W=﹣x2+16x+260=﹣(x﹣8)2+324,

∴当x=8时,W取得最大值,此时W=324,

10≤x≤15时,

W=﹣20x+520,

∴当x=10时,W取得最大值,此时W=320,

324>320,

∴李师傅第8天创造的利润最大,最大利润是324元;

(3)当1≤x<10时,

令﹣x2+16x+260=299,得x1=3,x2=13,

W>299时,3<x<13,

1≤x<10,

3<x<10,

10≤x≤15时,

W=﹣20x+520>299,得x<11.05,

10≤x≤11,

由上可得,李师傅获得奖金的月份是4月到11月,李师傅共获得奖金为:20×(11﹣3)=160(元),

即李师傅共可获得160元奖金.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,在单位长度为1米的平面直角坐标系中,曲线是由半径为2米,圆心角为多次复制并首尾连接而成.现有一点PA(A为坐标原点)出发,以每秒米的速度沿曲线向右运动,则在第2019秒时点P的纵坐标为( )

A. 2B. 1C. 0D. 1

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,矩形ABCD中,ACB=30°,将一块直角三角板的直角顶点P放在两对角线AC,BD的交点处,以点P为旋转中心转动三角板,并保证三角板的两直角边分别于边AB,BC所在的直线相交,交点分别为E,F.

(1)当PEAB,PFBC时,如图1,则的值为   

(2)现将三角板绕点P逆时针旋转α(0°<α<60°)角,如图2,求的值;

(3)在(2)的基础上继续旋转,当60°<α<90°,且使AP:PC=1:2时,如图3,的值是否变化?证明你的结论.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,一次函数y=x+4的图象与反比例k为常数,且k≠0)的图象交于A1a),Bb1)两点,

1)求反比例函数的表达式及点AB的坐标

2)在x轴上找一点,使PA+PB的值最小,求满足条件的点P的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图1是某品牌订书机,其截面示意图如图2所示.订书钉放置在轨槽CD内的MD处,由连接弹簧的推动器MN推紧,连杆EP一端固定在压柄CF上的点E处,另一端PDM上移动.当点P与点M重合后,拉动压柄CF会带动推动器MN向点C移动.使用时,压柄CF的端点F与出钉口D重合,纸张放置在底座AB的合适位置下压完成装订(即点D与点H重合).已知CAABCA2cmAH12cmCE5cmEP6cmMN2cm

1)求轨槽CD的长(结果精确到0.1);

2)装入订书钉需打开压柄FC,拉动推动器MN向点C移动,当∠FCD53°时,能否在ND处装入一段长为2.5cm的订书钉?(参考数据:≈2.24≈6.08sin53°≈0.80cos53°≈0.60

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】抛物线y=ax2+bx+c的对称轴为直线x=﹣1,部分图象如图所示,下列判断中:

abc>0;

b2﹣4ac>0;

9a﹣3b+c=0;

④若点(﹣0.5,y1),(﹣2,y2)均在抛物线上,则y1>y2

5a﹣2b+c<0.

其中正确的个数有(  )

A. 2 B. 3 C. 4 D. 5

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,点和点是反比例函数图象上的两点,一次函数的图象经过点,与轴交于点,与轴交于点,过点轴,垂足为,连接.已知的面积满足

1 _____ _____

2)已知点在线段上,当时,求点的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】为了满足师生的阅读需求,某校图书馆的藏书从2016年底到2018年底两年内由5万册增加到7.2万册.

1)求这两年藏书的年均增长率;

2)经统计知:中外古典名著的册数在2016年底仅占当时藏书总量的5.6%,在这两年新增加的图书中,中外古典名著所占的百分率恰好等于这两年藏书的年均增长率,那么到2018年底中外古典名著的册数占藏书总量的百分之几?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,菱形ABCD的对角线交于点ODFACCFBD

1)求证:四边形OCFD是矩形;(2)若AD5BD8,计算tanDCF的值.

查看答案和解析>>

同步练习册答案