【题目】已知:如图,二次函数的图象与x轴交于A(-2,0),B(4,0)两点,且函数的最大值为9.
(1)求二次函数的解析式;
(2)设此二次函数图象的顶点为C,与y轴交点为D,求四边形ABCD的面积.
【答案】(1)、y=-+2x+8;(2)、30.
【解析】
试题分析:(1)、根据交点和最值得出顶点坐标,然后将解析式设成顶点式,然后将交点代入求出a的值;(2)、将四边形的面积转化成△AOD的面积+四边形DOEC的面积+△BCE的面积进行求解.
试题解析:(1)、由抛物线的对称性知,它的对称轴是x=1. 又∵函数的最大值为9,
∴抛物线的顶点为C(1,9). 设抛物线的解析式为y=a+9,代入B(4,0),求得a=-1.
∴二次函数的解析式是y=-+9, 即y=-+2x+8.
(2)、
当x=0时,y=8,即抛物线与y轴的交点坐标为D(0,8).
过C作CE⊥x轴于E点.
∴S四边形ABCD=S△AOD+S四边形DOEC+S△BCE=×2×8+×(8+9)×1+×3×9=30.
科目:初中数学 来源: 题型:
【题目】已知:如图,在△ABC中,AB=AC,AD是BC边上的中线,AE∥BC,CE⊥AE,垂足为E.
(1)求证:△ABD≌△CAE;
(2)连接DE,线段DE与AB之间有怎样的位置和数量关系?请证明你的结论.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,四边形ABCD是平行四边形,DE平分∠ADC交AB于点E,BF平分∠ABC,交CD于点F.
(1)、求证:DE=BF;(2)、连接EF,写出图中所有的全等三角形.(不要求证明)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图所示,∠E=∠F=90°,∠B=∠C,AE=AF,给出下列结论:
①∠1=∠2;②BE=CF;③△CAN≌△ABM;④CD=DN其中正确的结论是( )
A. ①② B. ②③ C. ①②③ D. ②③④
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】下列等式,错误的是( )
A. (x2y3)2=x4y6B. (﹣xy)3=﹣xy3C. (3m2n2)2=9m4n4D. (﹣a2b3)2=a4b6
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com