【题目】立定跳远是嘉兴市体育中考的抽考项目之一,某校九年级(1),(2)班准备集体购买某品牌的立定跳远训练鞋.现了解到某网店正好有这种品牌训练鞋的促销活动,其购买的单价y(元/双)与一次性购买的数量x(双)之间满足的函数关系如图所示.
(1)当10≤x<60时,求y关于x的函数表达式;
(2)九(1),(2)班共购买此品牌鞋子100双,由于某种原因需分两次购买,且一次购买数量多于25双且少于60双;
①若两次购买鞋子共花费9200元,求第一次的购买数量;
②如何规划两次购买的方案,使所花费用最少,最少多少元?
【答案】(1)y=150﹣x; (2)①第一批购买数量为30双或40双.②第一次买26双,第二次买74双最省钱,最少9144元.
【解析】
(1)若购买x双(10<x<60),每件的单价=140﹣(购买数量﹣10),依此可得y关于x的函数关系式;
(2)①设第一批购买x双,则第二批购买(100﹣x)双,根据购买两批鞋子一共花了9200元列出方程求解即可.分两种情况考虑:当25<x≤40时,则60≤100﹣x<75;当40<x<60时,则40<100﹣x<60.
②把两次的花费与第一次购买的双数用函数表示出来.
解:(1)购买x双(10<x<60)时,y=140﹣(x﹣10)=150﹣x.
故y关于x的函数关系式是y=150﹣x;
(2)①设第一批购买x双,则第二批购买(100﹣x)双.
当25<x≤40时,则60≤100﹣x<75,则x(150﹣x)+80(100﹣x)=9200,
解得x1=30,x2=40;
当40<x<60时,则40<100﹣x<60,
则x(150﹣x)+(100﹣x)[150﹣(100﹣x)]=9200,
解得x=30或x=70,但40<x<60,所以无解;
答:第一批购买数量为30双或40双.
②设第一次购买x双,则第二次购买(100﹣x)双,设两次花费w元.
当25<x≤40时w=x(150﹣x)+80(100﹣x)=﹣(x﹣35)2+9225,
∴x=26时,w有最小值,最小值为9144元;
当40<x<60时,
w=x(150﹣x)+(100﹣x)[150﹣(100﹣x)]=﹣2(x﹣50)2+10000,
∴x=41或59时,w有最小值,最小值为9838元,
综上所述:第一次买26双,第二次买74双最省钱,最少9144元.
科目:初中数学 来源: 题型:
【题目】某市气象局统计了5月1日至8日中午12时的气温(单位),整理后分别绘制成如图所示的两幅统计图.
根据图中给出的信息,解答下列问题:
(1)该市5月1日至8日中午时气温的平均数是 ,中位数是 ;
(2)求扇形统计图中扇形的圆心角的度数;
(3)现从该市5月1日至5日的天中,随机抽取天,求恰好抽到天中午12时的气温均低于的概率.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,一次函数y=kx+b的图象与x轴,y轴分别相交于A,B两点,且与反比例函数y=﹣的图象在第二象限交与点C,如果点A为的坐标为(2,0),B是AC的中点.
(1)求点C的坐标及k、b的值.
(2)求出一次函数图象与反比例函数图象的另一个交点的坐标,并直接写出当时,x的取值范围.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在Rt△ABC中,AC=BC,∠ACB=90°,点D、E分别在AC、BC上,BD与AE交于点O,且CD=CE,若点F是BD的中点,连接CF,交AE于点G.
(1)求证:CF⊥AE;
(2)如图2,过点F作FM⊥BC,交AE的延长线于点M,垂足为M,连接CF,若CG=GM.
①求证:CF=CM;
②求的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】体育老师要从每班选取一名同学,参加学校的跳绳比赛.小静和小炳是跳绳能手,下面分别是小静、小炳各6次跳绳成绩统计图和成绩分析表
小静、小炳各6次跳绳成绩分析表
成绩 姓名 | 平均数 | 中位数 | 方差 |
小静 | 180 | 182.5 | 79.7 |
小炳 | 180 | a | 33 |
(1)根据统计图的数据,计算成绩分析表中a= ;
(2)结合以上信息,请你从两个不同角度评价这两位学生的跳绳水平.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在直角坐标系中,过原点O及点A(8,0),C(0,6)作矩形OABC、连结OB,点D为OB的中点,点E是线段AB上的动点,连结DE,作DF⊥DE,交OA于点F,连结EF.已知点E从A点出发,以每秒1个单位长度的速度在线段AB上移动,设移动时间为t秒.
(1)如图1,当t=3时,求DF的长.
(2)如图2,当点E在线段AB上移动的过程中,∠DEF的大小是否发生变化?如果变化,请说明理由;如果不变,请求出tan∠DEF的值.
(3)连结AD,当AD将△DEF分成的两部分的面积之比为1:2时,求相应的t的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知,点为二次函数图象的顶点,直线分别交轴正半轴,轴于点.
(1)如图1,若二次函数图象也经过点,试求出该二次函数解析式,并求出的值.
(2)如图2,点坐标为,点在内,若点,都在二次函数图象上,试比较与的大小.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,是正方形的边的中点,点与关于对称,的延长线与交于点,与的延长线交于点,点在的延长线上,作正方形,连接,记正方形,的面积分别为,,则下列结论错误的是( )
A. B. C. D.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图(1)在正方形ABCD中,点E是CD边上一动点,连接AE,作BF⊥AE,垂足为G交AD于F
(1)求证:AF=DE;
(2)连接DG,若DG平分∠EGF,如图(2),求证:点E是CD中点;
(3)在(2)的条件下,连接CG,如图(3),求证:CG=CD.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com