精英家教网 > 初中数学 > 题目详情

【题目】已知抛物线y=ax2+bx+c的顶点为D(﹣1,3),与x轴的一个交点在(﹣3,0)和(﹣2,0)之间,其部分图象如图,则以下结论:

①b2+4ac>0;②c﹣a=3;③a+b+c<0;④方程ax2+bx+c=m(m≥2)一定有实数根,其中正确的结论为(

A.②③ B.①③ C.①②③ D.①②④

【答案】C

【解析】

试题分析:∵抛物线与x轴有两个交点,

∴b2﹣4ac>0,所以①正确;

∵抛物线的顶点为D(﹣1,3),

∴a﹣b+c=3,

∵抛物线的对称轴为直线x=﹣=﹣1,

∴b=2a,

∴a﹣2a+c=3,即c﹣a=3,所以②正确;

∵抛物线的对称轴为直线x=﹣1,

∵抛物线与x轴的一个交点A在点(﹣3,0)和(﹣2,0)之间,

∴抛物线与x轴的另一个交点在点(0,0)和(1,0)之间,

∴当x=1时,y<0,

∴a+b+c<0,所以③正确;

∵抛物线的顶点为D(﹣1,3),

∵当x=﹣1时,二次函数有最大值为3,

∴方程ax2+bx+c=3有两个相等的实数根,

∵m≥2,

∴方程ax2+bx+c=m(m>3)没有实数根,所以④错误.

故选:C.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,在平行四边形ABCD中,ACBD相交于点O,点EOA的中点,连接BE并延长交AD于点F,已知SAEF3,则下列结论:SBCE30SABE9AEF∽△ACD,其中一定正确的是(  )

A.①②③④B.①③C.②③④D.①②③

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系xOy中,以原点O为圆心的圆过点A(13,0),直线y=kx3k+4与O交于B、C两点,则弦BC的长的最小值为( ).

A.22 B.24 C.10 D.12

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】定义:

数学活动课上,李老师给出如下定义:如果一个三角形有一边上的中线等于这条边的一半,那么称三角形为智慧三角形.

理解:

如图,已知上两点,请在圆上找出满足条件的点,使智慧三角形(画出点的位置,保留作图痕迹);

如图,在正方形中,的中点,上一点,且,试判断是否为智慧三角形,并说明理由;

运用:

如图,在平面直角坐标系中,的半径为,点是直线上的一点,若在上存在一点,使得智慧三角形,当其面积取得最小值时,直接写出此时点的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某电商平台长期销售A型商品,2017年以4800元购进该型号商品并且全部售完;2019年,这种型号的商品的进价比2017年下降了9/件,该平台用3000元购进了与2017年相同数量的该A型商品也全部售完,这两年A型商品的售价均为40/件.

12017A型商品的进价是多少元/件?

2)若该电商平台每年销售这种礼盒所获利润的年增长率相同,问年增长率是多少?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知圆0的直径AB垂直于弦CD于点ECG是圆O的切线交AB的延长线于点G,连接CO并延长交AD于点F,且CFAD.

1)试问:CG//AD吗?说明理由:

2)证明:点EOB的中点.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在解决数学问题时,我们常常从特殊入手,猜想结论,并尝试发现解决问题的策略与方法.

(问题提出)

求证:如果一个定圆的内接四边形对角线互相垂直,那么这个四边形的对边的平方和是一个定值.

(从特殊入手)

我们不妨设定圆O的半径是R,O的内接四边形ABCD中,ACBD.

请你在图①中补全特殊殊位置时的图形,并借助于所画图形探究问题的结论.

(问题解决)

已知:如图②,定圆⊙O的半径是R,四边形ABCD是⊙O的内接四边形, ACBD.

求证:

证明:

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】抛物线yax2+bx+ca0)的对称轴为直线x=﹣1,与x轴的一个交点在(﹣30和(﹣20)之间,其部分图象如图,则下列结论:2ab04acb20点(x1y1),(x2y2)在抛物线上若x1x2,则y1y2a+b+c0.正确结论的个数是(  )

A.1B.2C.3D.4

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,二次函数yax2+bx+cabc为常数,且a≠0)的图象与x轴的交点的横坐标分别为﹣13,则下列结论:①abc0;②2a+b0;③3a+2c0;④对于任意x均有ax2a+bxb≥0,正确个数有(  )

A.1B.2C.3D.4

查看答案和解析>>

同步练习册答案