分析 根据题意画出图形,利用等腰三角形的“三线合一”的性质得到BD=$\frac{1}{2}$BC=6cm,然后在直角△ABD中,利用勾股定理求得高线AD的长度,根据三角形的面积公式即可得出结论.
解答
解:如图,AD是BC边上的高线.
∵AB=AC=10cm,BC=12cm,
∴BD=CD=6cm,
∴在直角△ABD中,由勾股定理得到:AD=$\sqrt{{AB}^{2}{-BD}^{2}}$=$\sqrt{{10}^{2}-{6}^{2}}$=8(cm),
∴S△ABC=$\frac{1}{2}$BC•AD=$\frac{1}{2}$×12×8=48(cm2).
故答案是:48cm2.
点评 本题考查的是勾股定理,熟知在任何一个直角三角形中,两条直角边长的平方之和一定等于斜边长的平方是解答此题的关键.
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:填空题
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
| A. | 1个 | B. | 2个 | C. | 3个 | D. | 4个 |
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
| A. | $\sqrt{9}$=±3 | B. | (-$\frac{1}{3}$)-1=-3 | C. | 2a+3b=5ab | D. | a6÷a2=a3 |
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com