精英家教网 > 初中数学 > 题目详情

【题目】下列方程中,是一元二次方程共有( )

x2+3=0;2x2﹣3xy+4=0; x2﹣4x+k=0;x2+mx﹣1=0;3x2+x=20.

A. 2 B. 3 C. 4 D. 5

【答案】A

【解析】

根据一元二次方程的定义解答,未知数的最高次数是2;二次项系数不为0;是整式方程;含有一个未知数.由这四个条件对四个选项进行验证,满足这四个条件者为正确答案.

:x2+3=0是一元二次方程,故①正确;

2x23xy+4=0是二元二次方程,故②错误;

x24x+k=0是二元二次方程,故③错误;

x2+mx1=0是二元二次方程,故④错误;

3x2+x=20是一元二次方程,故⑤正确;

所以A选项是正确的.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,一隧道的横截面是由一段抛物线及矩形的三边围成的,隧道宽BC=10米,矩形部分高AB=3米,抛物线型的最高点E离地面OE=6米,按如图建立一个以BCx轴,OEy轴的直角坐标系.

(1)求抛物线的解析式;

(2)如果该隧道内设有双车道,现有一辆货运卡车高4.5米,宽3米,这辆货运卡车能顺利通过隧道吗?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在平面直角坐标系xOy中,对于点P(a,b)和点Q(a,b′),给出如下定义:

b′=,则称点Q为点P的理想点.例如:点(1,2)的理想点的坐标是(1,﹣2),点(﹣2,3)的理想点的坐标是(﹣2,3).

(1)点(,﹣1)理想点的坐标是_____;若点C在函数y=2x2的图象上,则它的理想点是A(1,﹣2),B(﹣1,2)中的哪一个?_____

(2)若点P在函数y=﹣2x+4(﹣2xk,k﹣2)的图象上,其理想点为Q:

①若其理想点Q的纵坐标b′的取值范围是﹣6b′10,求k的值;

②在①的条件下,若点P的理想点Q都不在反比例函数y=(m0,x0)上,求m的取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知:关于 x 的方程 2x2+kx﹣1=0.

(1)求证:方程有两个不相等的实数根;

(2)若方程的一个根是﹣1,求另一个根及 k 值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知如图所示的正方形网格中每个网格的单位长度为1,ABC的顶点均在格点上根据所给的平面直角坐标系解答下列问题

(1)A点的坐标为________;B点的坐标为________;C点的坐标为________.

(2)将点ABC的横坐标保持不变纵坐标分别乘以-1,分别得点A'、B'、C',并连接A'、B'、C'A' B' C',请画出A' B' C'.

(3)A' B' C'ABC的位置关系是________.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,阳光通过窗口照到教室内,竖直窗框在地面上留下2.1 m长的影子如图所示,已知窗框的影子DE的点E到窗下墙脚的距离CE=3.9 m,窗口底边离地面的距离BC=1.2 m,试求窗口的高度(即AB的值).

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,放在直角坐标系中的正方形ABCD边长为4,现做如下实验:抛掷一枚均匀的正四面体骰子(它有四个顶点,各顶点的点数分别是1至4这四个数字中一个),每个顶点朝上的机会是相同的,连续抛掷两次,将骰子朝上的顶点数作为直角坐标中P点的坐标)第一次的点数作横坐标,第二次的点数作纵坐标).

(1)求P点落在正方形ABCD面上(含正方形内部和边界)的概率.

(2)将正方形ABCD平移整数个单位,则是否存在一种平移,使点P落在正方形ABCD

面上的概率为0.75;若存在,指出其中的一种平移方式;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在矩形ABCD中,E是AD边的中点,BE⊥AC于点F,连接DF,分析下列五个结论:①△AEF∽△CAB;②CF=2AF;③DF=DC;④S四边形CDEF=S△ABF,其中正确的结论有________个。

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】(满分12分)在平面直角坐标系中,抛物线轴的两个交点

分别为A-30)、B10),过顶点CCH⊥x轴于点H.

1)直接填写:= b= ,顶点C的坐标为

2)在轴上是否存在点D,使得△ACD是以AC为斜边的直角三角形?若存在,求出点D的坐标;若不存在,说明理由;

3)若点Px轴上方的抛物线上一动点(点P与顶点C不重合),PQ⊥AC于点Q,当△PCQ△ACH相似时,求点P的坐标.

查看答案和解析>>

同步练习册答案