【题目】如图,DB∥AC,且DB=AC,E是AC的中点.
(1)求证:四边形BDEC是平行四边形;
(2)连接AD、BE,△ABC添加一个条件: ,使四边形DBEA是矩形(不需说明理由).
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,O为坐标原点,A点的坐标为(18,0),B点的坐标为(0,24).
(1)求AB的值;
(2)点C在OA上,且BC平分∠OBA,求点C的坐标;
(3)在(2)的条件下,点M在第三象限,点D为y轴上的一个点,连接DM交x轴于点H,连接CM,点F为BC的中点,点E为AD的中点,AD与BC交于点G,,点H为DM的中点,当∠MCG-∠DGF=∠OAB,且AD=CM时,求线段EF的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知:如图,在正方形ABCD外取一点E,连接AE、BE、DE.过点A作AE的垂线交DE于点P.若AE=AP=1,PD=2,下列结论:①EB⊥ED;②∠AEB=135°;③S正方形ABCD=5+2;④PB=2;其中正确结论的序号是( )
A.①③④B.②③④C.①②④D.①②③
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】【问题探究】
()如图①,点是正高上的一定点,请在上找一点,使,并说明理由.
()如图②,点是边长为的正高上的一动点,求的最小值.
【问题解决】
()如图③,、两地相距, 是笔直第沿东西方向向两边延伸的一条铁路.今计划在铁路线上修一个中转站,再在间修一条笔直的公路.如果同样的物资在每千米公路上的运费是铁路上的两倍.那么,为使通过铁路由到再通过公路由到的总运费达到最小值,请确定中转站\的位置,并求出的长.(结果保留根号)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】甲骑自行车,乙步行均从地出发,以各自的速度匀速向地行驶,其中甲先出发到达地,停留分钟后,按原路原速返回到地,乙则一直步行到地,如图是甲乙两人之间的距离米与甲用时之间的部分函数图象.
(1)请直接写出甲,乙两人的速度,并将图中的( )内填上正确的值;
(2)求甲从地返回到与乙相遇这段过程中,与之间的函数关系式;
(3)求乙在向地行驶过程中甲乙两人相距米时,甲所用时间及,两地的距离.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】学习了统计知识后,小明就本班同学的上学方式进行了一次调查统计,图(1)和图(2)是他通过采集数据后,绘制的两幅不完整的统计图,请你根据图中提供的信息,解答以下问题:
(1)求该班共有多少名学生;
(2)在图(1)中,将表示“步行”的部分补充完整;
(3)在扇形统计图中,计算出“骑车”部分所对应的圆心角的度数;
(4)如果全年级共600名同学,请你估算全年级步行上学的学生人数.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知△ABC中,AB=AC,∠BAC=120°,在BC上取一点O,以O为圆心、OB为半径作圆,且⊙O过A点.
(1)如图①,若⊙O的半径为5,求线段OC的长;
(2)如图②,过点A作AD∥BC交⊙O于点D,连接BD,求的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】定义:如果一个四边形的两条对角线相等且相互垂直,则称这个四边形为“等垂四边形”.
如图1,四边形ABCD中,若AC=BD,AC⊥BD,则称四边形ABCD为“等垂四边形.根据等垂四边形对角线互相垂直的特征可得等垂四边形的一个重要性质:等垂四边形的面积等于两条对角线乘积的一半.根据以上信息解答下列问题:
(1)矩形 “等垂四边形”(填“是”或“不是”);
(2)如图2,已知⊙O的内接四边形ABCD是等垂四边形,若⊙O的半径为6,∠ADC=60°,求四边形ABCD的面积;
(3)如图3,已知⊙O的内接四边形ABCD是等垂四边形,作OM⊥AD于M.请猜想OM与BC的数量关系,并证明你的结论.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】甲、乙两位同学做抛骰子(均匀正方体形状)实验,他们共抛了60次,出现向上点数的次数如表:
向上点数 | 1 | 2 | 3 | 4 | 5 | 6 |
出现次数 | 8 | 10 | 7 | 9 | 16 | 10 |
(1)计算出现向上点数为6的频率.
(2)丙说:“如果抛600次,那么出现向上点数为6的次数一定是100次.”请判断丙的说法是否正确并说明理由.
(3)如果甲乙两同学各抛一枚骰子,求出现向上点数之和为3的倍数的概率.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com