分析 (1)作FH∥BC交AE于H,如图,根据平行线分线段成比例定理,由HF∥CE得$\frac{HF}{CE}$=$\frac{DF}{CD}$=1,则HF=CE,由HF∥BE得$\frac{AF}{AB}$=$\frac{HF}{BE}$=$\frac{CE}{BE}$=$\frac{1}{3}$,利用比例性质得$\frac{AF}{BF}$=$\frac{1}{2}$,所以BF:AF=2:1;
(2)与(1)一样,由HF∥CE得$\frac{HF}{CE}$=$\frac{DF}{CD}$=$\frac{1}{m}$,则HF=$\frac{1}{m}$CE,由HF∥BE得到$\frac{AF}{AB}$=$\frac{HF}{BE}$=$\frac{\frac{1}{m}CE}{nCE}$=$\frac{1}{mn}$,然后根据比例性质可得BF:AF=(mn-1):1.
解答 解:(1)
作FH∥BC交AE于H,如图,
∵HF∥CE,
∴$\frac{HF}{CE}$=$\frac{DF}{CD}$=1,
∴HF=CE,
∵HF∥BE,
∴$\frac{AF}{AB}$=$\frac{HF}{BE}$=$\frac{CE}{BE}$=$\frac{1}{3}$,
∴$\frac{AF}{BF}$=$\frac{1}{2}$,
即BF:AF=2:1;
故答案为2:1;
(2)作FH∥BC交AE于H,
∵HF∥CE,
∴$\frac{HF}{CE}$=$\frac{DF}{CD}$=$\frac{1}{m}$,
∴HF=$\frac{1}{m}$CE,
∵HF∥BE,
∴$\frac{AF}{AB}$=$\frac{HF}{BE}$=$\frac{\frac{1}{m}CE}{nCE}$=$\frac{1}{mn}$,
∴$\frac{AF}{BF}$=$\frac{1}{mn-1}$,
即BF:AF=(mn-1):1.
点评 本题考查了平行线分线段成比例:三条平行线截两条直线,所得的对应线段成比例.也考查了比例的性质.
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:填空题
| 50≤x<60 | 60≤x<70 | 70≤x<80 | 80≤x<90 | 90≤x<100 |
| 2 | 8 | 12 | 20 | 8 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com