【题目】如图,直线y=kx+b与直线y=2x+6关于y轴对称且交于点A,直线y=2x+6交x轴于点B,直线y=kx+b交x轴于点C,正方形DEFG一边DG在线段BC上,点E在线段AB上,点F在线段AC上,则点G的坐标是____.
【答案】(,0).
【解析】
根据轴对称求得直线AC的解析式,再根据正方形的性质以及轴对称的性质设G(m,0),则F(m,2m),代入直线AC的解析式,得到关于m的方程,解得即可.
解:由直线y=2x+6可知A(0,6),B(﹣3,0).
∵直线y=kx+b与直线y=2x+6关于y轴对称且交于点A,直线y=2x+6交x轴于点B,直线y=kx+b交x轴于点C,
∴直线AC为y=﹣2x+6,
设G(m,0),
∵正方形DEFG一边DG在线段BC上,点E在线段AB上,点F在线段AC上,
∴F(m,2m),
代入y=﹣2x+6得:2m=﹣2m+6,
解得:m,
∴G的坐标为(,0).
故答案为:(,0).
科目:初中数学 来源: 题型:
【题目】如图,在正方形ABCD中,E是BC上的一点,连结AE,作BF⊥AE,垂足为H,交CD于F,作CG∥AE,交BF于G.
求证:(1) CG=BH;(2)FC2=BF·GF;(3).
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图甲,在△ABC中,∠ACB=90°,AC=4cm,BC=3cm,如果点P从点B出发沿BA方向向点A匀速运动,同时点Q由点A出发沿AC方向向点C匀速运动,它们的速度均为1cm/s,连接PQ,设运动时间为t(s)(0<t<4).
(1)当t为何值时,PQ∥BC;
(2)是否存在某时刻t,使线段PQ恰好把△ABC的面积平分?若存在,求出此时t的值;若不存在,请说明理由;
(3)如图乙,连接PC,将△PQC沿QC翻折,得到四边形PQP′C,当四边形PQP′C为菱形时,求t的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】先阅读下列的解题过程,然后回答下列问题.
例:解绝对值方程:.
解:讨论:①当时,原方程可化为,它的解是;
②当时,原方程可化为,它的解是.
原方程的解为或.
(1)依例题的解法,方程算的解是_______;
(2)尝试解绝对值方程:;
(3)在理解绝对值方程解法的基础上,解方程:.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在笔直的铁路上A、B两点相距25km,C、D为两村庄,DA=10km,CB=15km,DA⊥AB于A,CB⊥AB于B,现要在AB上建一个中转站E,使得C、D两村到E站的距离相等.求E应建在距A多远处?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知正方形ABCD,AB=8,点E是射线DC上一个动点(点E与点D不重合),连接AE,BE,以BE为边在线段AD的右侧作正方形BEFG,连结CG.
(1)当点E在线段DC上时,求证:△BAE≌△BCG;
(2)在(1)的条件下,若CE=2,求CG的长;
(3)连接CF,当△CFG为等腰三角形时,求DE的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知:如图所示,在平面直角坐标系中,函数(,是常数)的图象经过点、点,其中,直线交轴于点.过点作轴的垂线,垂足为,过点作轴的垂线,垂足为,与相交于点,连接.
(1)若的面积为,求点的坐标;
(2)求证:四边形为平行四边形;
(3)若,求直线的函数解析式.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】我县为积极响应创建“省级卫生城市”的号召,某校1500名学生参加了卫生知识竞赛,成绩记为A、B、C、D四等,从中随机抽取了部分学生成绩进行统计,绘制成如下图所示的两幅不完整的统计图表,根据图表中的信息,以下说法不正确的是( )
A. 样本容量是200 B. 样本中C等所占百分比是10%
C. D等所在扇形的圆心角为15° D. 估计全校学生成绩为A等大约有900人
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知CD是△ABC中AB边上的高,以CD为直径的⊙O分别交CA、CB于点E、F,点G是AD的中点.
(1)求证:GE是⊙O的切线;
(2)当△ADC满足怎样的条件时,四边形EGDO恰为正方形?(直接写出结果即可)
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com