【题目】如图,矩形ABCD的顶点A、B在x轴的正半轴上,反比例函数y=
(k≠0)在第一象限内的图象经过点D,交BC于点E.若AB=4,CE=2BE,tan∠AOD=
,则k的值_____.
![]()
科目:初中数学 来源: 题型:
【题目】我们知道,与三角形各边都相切的圆叫做三角形的内切圆,则三角形可以称为圆的外切三角形.如图1,
与
的三边
分别相切于点
则
叫做
的外切三角形.以此类推,各边都和圆相切的四边形称为圆外切四边形.如图2,
与四边形ABCD的边
分别相切于点
则四边形
叫做
的外切四边形.
![]()
(1)如图2,试探究圆外切四边形
的两组对边
与
之间的数量关系,猜想:
(横线上填“>”,“<”或“=”);
(2)利用图2证明你的猜想(写出已知,求证,证明过程);
(3)用文字叙述上面证明的结论: ;
(4)若圆外切四边形的周长为
相邻的三条边的比为
,求此四边形各边的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在△ABC中,∠C=90°,∠BAC的平分线交BC于点D,点O在AB上,以点O为圆心,OA为半径的圆恰好经过点D,分别交AC,AB于点E,F.
(1)试判断直线BC与⊙O的位置关系,并说明理由;
(2)若BD=2
,BF=2,求阴影部分的面积(结果保留π).
![]()
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系
中,直线
与
轴,
轴分别相交于点
.点
是
轴上动点,点
从点
出发向原点O运动,点
在点
右侧,
.过点
作
于点
将
沿直线
翻折,得到
连接
.设![]()
与
重合部分面积为
求:
![]()
(1)求线段
的长(用含
的代数式表示);
(2)求
关于
的函数解析式,并直接写出自变量
的取值范围.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】一个问题解决往往经历发现猜想——探索归纳——问题解决的过程,下面结合一道几何题来体验一下.
(发现猜想)(1)如图①,已知∠AOB=70°,∠AOD=100°,OC为∠BOD的角平分线,则∠AOC的度数为 ;.
![]()
(探索归纳)(2)如图①,∠AOB=m,∠AOD=n,OC为∠BOD的角平分线. 猜想∠AOC的度数(用含m、n的代数式表示),并说明理由.
(问题解决)(3)如图②,若∠AOB=20°,∠AOC=90°,∠AOD=120°.若射线OB绕点O以每秒20°逆时针旋转,射线OC绕点O以每秒10°顺时针旋转,射线OD绕点O每秒30°顺时针旋转,三条射线同时旋转,当一条射线与直线OA重合时,三条射线同时停止运动. 运动几秒时,其中一条射线是另外两条射线夹角的角平分线?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】图①是放置在水平面上的台灯,图②是其侧面示意图(台灯底座高度忽略不计),其中灯臂AC=44cm,灯罩CD=32cm,灯臂与底座构成的∠CAB=60°.CD可以绕点C上下调节一定的角度.使用发现:当CD与水平线所成的角为30°时,台灯光线最佳.现测得点D到桌面的距离为54.06cm.请通过计算说明此时台灯光线是否为最佳?(参考数据:
取1.73).
![]()
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,扇形OAB中,∠AOB=90°,将扇形OAB绕点B逆时针旋转,得到扇形BDC,若点O刚好落在弧AB上的点D处,则
的值为( )
![]()
A.
B.
C.
D.![]()
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知点P(
,
)和直线y=kx+b,则点P到直线y=kx+b的距离证明可用公式d=
计算.
例如:求点P(﹣1,2)到直线y=3x+7的距离.
解:因为直线y=3x+7,其中k=3,b=7.
所以点P(﹣1,2)到直线y=3x+7的距离为:d=
=
=
=
.
根据以上材料,解答下列问题:
(1)求点P(1,﹣1)到直线y=x﹣1的距离;
(2)已知⊙Q的圆心Q坐标为(0,5),半径r为2,判断⊙Q与直线y=
x+9的位置关系并说明理由;
(3)已知直线y=﹣2x+4与y=﹣2x﹣6平行,求这两条直线之间的距离.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com