精英家教网 > 初中数学 > 题目详情

【题目】如图,矩形ABCD的顶点ABx轴的正半轴上,反比例函数y(k0)在第一象限内的图象经过点D,交BC于点E.若AB4CE2BEtanAOD,则k的值_____

【答案】3

【解析】

tanAOD,可设AD3aOA4a,在表示出点DE的坐标,由反比例函数经过点DE列出关于a的方程,解之求得a的值即可得出答案.

解:∵tanAOD

∴设AD3aOA4a

BCAD3a,点D坐标为(4a3a),

CE2BE

BEBCa

AB4

∴点E4+4aa),

∵反比例函数 经过点DE

k12a2=(4+4aa

解得:a a0(舍),

D2

k3

故答案为3

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】我们知道,与三角形各边都相切的圆叫做三角形的内切圆,则三角形可以称为圆的外切三角形.如图1的三边分别相切于点叫做的外切三角形.以此类推,各边都和圆相切的四边形称为圆外切四边形.如图2与四边形ABCD的边分别相切于点则四边形叫做的外切四边形.

1)如图2,试探究圆外切四边形的两组对边之间的数量关系,猜想: (横线上填“>”“<”“=”)

2)利用图2证明你的猜想(写出已知,求证,证明过程)

3)用文字叙述上面证明的结论:

4)若圆外切四边形的周长为相邻的三条边的比为,求此四边形各边的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在△ABC中,∠C90°,∠BAC的平分线交BC于点D,点OAB上,以点O为圆心,OA为半径的圆恰好经过点D,分别交ACAB于点EF

1)试判断直线BCO的位置关系,并说明理由;

2)若BD2BF2,求阴影部分的面积(结果保留π).

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,直线轴,轴分别相交于点.点轴上动点,点从点出发向原点O运动,点在点右侧,.过点于点沿直线翻折,得到连接.设重合部分面积为求:

1)求线段的长(用含的代数式表示)

2)求关于的函数解析式,并直接写出自变量的取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,的直径,是弦,点在圆外,于点,连接

1)求证:的切线;

2)求证:

3)设的面积为的面积为,若,求的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】一个问题解决往往经历发现猜想——探索归纳——问题解决的过程,下面结合一道几何题来体验一下.

(发现猜想)(1)如图①,已知∠AOB70°,∠AOD100°OC为∠BOD的角平分线,则∠AOC的度数为 .

(探索归纳)(2)如图①,∠AOBm,∠AODnOC为∠BOD的角平分线. 猜想∠AOC的度数(用含mn的代数式表示),并说明理由.

(问题解决)(3)如图②,若∠AOB20°,∠AOC90°,∠AOD120°.若射线OB绕点O以每秒20°逆时针旋转,射线OC绕点O以每秒10°顺时针旋转,射线OD绕点O每秒30°顺时针旋转,三条射线同时旋转,当一条射线与直线OA重合时,三条射线同时停止运动. 运动几秒时,其中一条射线是另外两条射线夹角的角平分线?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】图①是放置在水平面上的台灯,图②是其侧面示意图(台灯底座高度忽略不计),其中灯臂AC44cm,灯罩CD32cm,灯臂与底座构成的∠CAB60°CD可以绕点C上下调节一定的角度.使用发现:当CD与水平线所成的角为30°时,台灯光线最佳.现测得点D到桌面的距离为54.06cm.请通过计算说明此时台灯光线是否为最佳?(参考数据:1.73).

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,扇形OAB中,∠AOB90°,将扇形OAB绕点B逆时针旋转,得到扇形BDC,若点O刚好落在弧AB上的点D处,则的值为(  )

A.B.C.D.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知点P()和直线y=kx+b,则点P到直线y=kx+b距离证明可用公式d= 计算.

例如:求点P(﹣1,2)到直线y=3x+7的距离.

解:因为直线y=3x+7,其中k=3,b=7.

所以点P(﹣1,2)到直线y=3x+7的距离为:d== = =

根据以上材料,解答下列问题:

(1)求点P(1,﹣1)到直线y=x﹣1的距离;

(2)已知⊙Q的圆心Q坐标为(0,5),半径r2,判断⊙Q与直线y=x+9的位置关系并说明理由;

(3)已知直线y=﹣2x+4y=﹣2x﹣6平行,求这两条直线之间的距离.

查看答案和解析>>

同步练习册答案